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Fig. 1. Our approach to accessibility report generation collects screenshots and accessibility audits through
an app crawler or a manual recording tool. From the collected data, a report generator uses a screen grouping
model and UI element de-duplication heuristics to generate an interactive report.

Many apps have basic accessibility issues, like missing labels or low contrast. To supplement manual testing,
automated tools can help developers and QA testers find basic accessibility issues, but they can be laborious
to use or require writing dedicated tests. To motivate our work, we interviewed eight accessibility QA
professionals at a large technology company. From these interviews, we synthesized three design goals for
accessibility report generation systems. Motivated by these goals, we developed a system to generate whole
app accessibility reports by combining varied data collection methods (e.g., app crawling, manual recording)
with an existing accessibility scanner. Many such scanners are based on single-screen scanning, and a key
problem in whole app accessibility reporting is to effectively de-duplicate and summarize issues collected
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across an app. To this end, we developed a screen grouping model with 96.9% accuracy (88.8% F1-score) and
UI element matching heuristics with 97% accuracy (98.2% F1-score). We combine these technologies in a
system to report and summarize unique issues across an app, and enable a unique pixel-based ignore feature
to help engineers and testers better manage reported issues across their app’s lifetime. We conducted a user
study where 19 accessibility engineers and testers used multiple tools to create lists of prioritized issues in
the context of an accessibility audit. Our system helped them create lists they were more satisfied with while
addressing key limitations of current accessibility scanning tools.

CCS Concepts: • Human-centered computing → Accessibility design and evaluation methods; Inter-
active systems and tools.

Additional Key Words and Phrases: UI understanding, app crawling, accessibility
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1 INTRODUCTION
Recent studies have found that a large number of both Android [56] and iOS apps [74] are still
missing basic accessibility. This lack of accessibility can result from misleading or missing labels
that provide descriptions of UI elements to accessibility services, or result from UI elements being
completely missing from their apps’ accessibility meta-data and thus unavailable for interaction [74].
Why are developers not making their apps more accessible? For some, they may be unaware of
accessibility requirements, and others may choose to deprioritize accessibility in favor of other app
features [4, 64].
Another cause may be a lack of efficient and effective accessibility testing tools. A variety of

companies provide accessibility scanners, such as Accessibility Scanner for Android [30] and
Accessibility Inspector on iOS [36], which must be manually activated on each screen of an app
to dynamically test for a variety of accessibility issues. Unfortunately, it is laborious and time
consuming for a developer to process and analyze a complete scan of their app. First, they must
manually visit each screen in the app and collect a scan. Once they have completed scanning the
whole app, developers must go through a lengthy process to examine the separate reports for each
screen, identify true errors from false positives, and prioritize errors to fix. Huq et al. [34] note
that the long list of reported errors from this process, which may contain many duplicates, often
demotivates developers from addressing accessibility issues. We conducted a formative study, and
found that some developers analyze reports scan by scan, instead of in aggregate, creating duplicate
work when there are overlaps between scans. Most tools also have no memory from scan to scan,
so each time they scan a screen, the developer must manually filter out false positives they have
already identified as incorrect from previous scans.

Prior work has tried to address these challenges by providing accessibility app crawlers [18, 58, 59]
that randomly or through record & replay approaches crawl an app to detect accessibility issues.
There are two limitations to these approaches. First, they rely on accessible view hierarchies to
drive the crawling itself which prior work has demonstrated to be often incomplete or unavailable
for highly inaccessible apps [40, 74], which are the kinds of apps we most aim to support with our
system. Zhang et. al. [74] found that 59% of app screens had at least one UI element that could
not be matched to an element in the view hierarchy, and 94% of apps had at least one such screen.
Second, none of these works has yet studied how users interact with and interpret information from
these accessibility reports, and what features are important in an accessibility report generation
tool.

ACM Trans. Comput.-Hum. Interact., Vol. 1, No. 1, Article 1. Publication date: January 2024.

https://doi.org/10.1145/3674967


Towards Automated Accessibility Report Generation for Mobile Apps 1:3

In this paper, we introduce a pixel-based report generation system using an off-the shelf ac-
cessibility scanning tool which has been instrumented to detect inaccessible elements with no
corresponding match in the underlying view hierarchy. This can enable our work to report on
a more diverse set of apps with incomplete or missing view hierarchies. Our accessibility report
generation system applies a multi-step workflow that uses pixel-based machine learning models and
heuristics to generate a high level summary of results and filter false positive issues (see Figure 1).

To motivate our system, we interviewed eight accessibility engineers and QA testers about their
pain points in using current accessibility scanning tools. Through these interviews, we identified
the following user needs for an accessibility report generation system:

(1) Reduce the time required for developers and QA testers to manually scan individual screens
with accessibility scanning tools.

(2) Provide developers and QA testers with an overall accessibility report of scan results.
(3) Enable developers and QA testers to reduce noise by ignoring false positives or previously

addressed issues.

Finally, we conducted a user study of our system where participants interacted with reports
generated by a manual scanning tool and an app crawler. Participants were more satisfied with
their accessibility audit summaries created with the help our system vs a baseline tool, and it helped
them quickly prioritize important issues. Our study provides insights into the features that should
be supported by accessibility report generation systems.
It is important to recognize that while this paper focuses entirely on improving automated

accessibility testing, this is just a part of the larger testing ecosystem that is needed to produce
highly accessible apps. First, testing should be done throughout the development workflow starting
as early as possible, for example using static analysis tools to evaluate source code for accessibility
issues [25, 28]. Although many of our subjects and users work on products in later stages of
development, it is worth noting that our tool can be used as soon as the app under development
has a functional UI, and could in principle be used in continuous integration to find and surface
accessibility errors regularly during development. Second, it is well known that automated testing
cannot detect all issues [2, 34, 54], and manual testing should also be done to ensure the most
accessible app experience. Both accessibility testing specialists [9] and people with disabilities [46]
should be recruited for manual testing. Our user study suggests that one benefit of our tool may be
that it reduces the time testers spend reading test reports and allows them to perform more complex
manual testing, though this deserves further study. We recognize that automated accessibility
testing systems, like the one we describe here, are only a part of the solution and should not be
used as the only measure to ensure accessibility.

The contributions of this paper include:

• A formative study to identify key limitations and inefficiencies with accessibility scanning
tools, inspiring 3 key design goals for a system to generate basic accessibility reports.

• An accessibility report generation system instantiating these design goals through pixel-based
UI understanding models and heuristics. The system combines an accurate screen grouping
model (96.9% accuracy, 88.8% F1) with UI element detection [74] and matching to build an
application storyboard of unique screens, de-duplicate issues, enable an ignore feature, and
filter false positives.

• A user study with 19 app developers and QA testers demonstrating that our report generation
system can generate clean and accurate reports which can help them quickly prioritize and
find common issues across an app. The study also reveals design insights for accessibility
reporting interfaces and features needed to make them more effective in future systems.
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Development Stage Approach
Development (Static) Source Code Analysis: Android Lint [28], AATK [25]

Test (Dynamic)
UI Testing Frameworks: Espresso [27], Roboelectric [55], Earl Gray [24],
XCTest [37]

Accessibility Testing Frameworks: Latte [57]

Runtime (Dynamic)

App Crawling: MATE [18], Alshayban et al. [4], Groundhog [59],
Xbot [14]

Scanners: Accessibility Inspector [36], Accessibility Scanner [30],
Evinced [20], Lighthouse [31]

Record & Replay: A11yPuppetry [58]
Scanning, App Crawling, Summarized Report: Our Work

Table 1. Tools and frameworks for automated accessibility testing span across development, test, and run-time
stages. Our work uses a dynamic approach that relies on app crawling and a scanner to generate a basic
accessibility report.

2 RELATEDWORK
Previous research systems have explored how to automatically collect, report, and repair accessibility
issues. We primarily review tools for automated detection and reporting in mobile app contexts;
however, as our work also provides insights into the challenges of current accessibility scanning
tools and outcomes on how developers interact with accessibility reports for mobile apps, we review
related work in the web context on automated accessibility reporting which may share similar
issues and insights. We also review work in methods for UI element and screen identification as our
work improves upon existing models and enables use cases beyond accessibility report generation.

2.1 Challenges of Accessibility Testing Tools
While automated accessibility testing tools are valuable to QA professionals and developers in
testing their apps’ accessibility support, they do have a number of challenges that have been studied
by prior work. While there are multiple types of accessibility testing tools such as accessibility
testing frameworks (e.g, Latte [57]), in our work, we focus on accessibility auditing tools which
scan and report accessibility issues in developed software. Our work relates to three key challenges
with these tools. First, these tools often produce false positives [1, 34] which we also validated in
our formative study. Our work aims to alleviate one category of false positive issues commonly
appearing in the results of accessibility scanners – i.e., issues reported with no corresponding visible
UI element – by applying a pixel-based UI understanding model [74]. While this only addresses
one common type of false positive, there is potential for accessibility testing tools to adopt ML
technologies to both detect new categories of issues and filter false positives.

The second challenge our work examines is automatic report generation. Some work has found
varied levels of coverage in accessibility testing tools covering different success criteria [52, 65].
Therefore, testers may need to apply multiple automated accessibility auditing tools to their mobile
or web interfaces to get more complete coverage [1, 7, 34]. After testers run these tools, they will
likely also need to aggregate, summarize, and compare the results of each tool [1, 34] which can be
difficult and labor intensive. Our work targets these challenges in two ways. First, we provide a
method for automatic summarization and generation of a report from the results of raw accessibility
audit results to alleviate the need for developers and QA testers to do this manually. Second, our
report generation method is agnostic to the underlying accessibility auditing tool. Our system
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uses Accessibility Inspector [36], but it could also replace this or augment its results with the
results of other accessibility auditing tools if they provide an API or provide the results in an easily
consumable output format (e.g., JSON).
Another challenge of many accessibility auditing tools is that they require testers to traverse

and scan screens to be audited. However, this manual effort in scanning is a burden to testers and
is not scalable or easily repeatable. Our work applies an app crawler to automatically navigate app
interfaces to collect screens to be audited. Other work also uses app crawlers for accessibility testing,
but focuses less on summarization and reporting [18, 59]. Much of the work in large scale web
accessibility testing also uses crawling [35] to collect accessibility audits, and even enables reporting
metrics that would not be possible without an automated solution [47]. Our work contributes an
approach to collect the underlying data that would be necessary to report such metrics for mobile
apps in the future.

2.2 Automated Tools and Frameworks for Mobile Accessibility Testing
Several tools exist to check accessibility properties of apps [60], and they can generally be catego-
rized as development-, test-, or run-time (Table 1). Development-time tools, like AndroidLint [28],
use static analysis techniques to examine code and declarative user interface descriptions for
potential issues. These tools do not have access to user interface elements that may be created
programmatically or data that is downloaded at run-time.

Test-time tools [24, 27, 37, 55, 57] are integrated into functional or UI testing processes, and collect
data when tests are run. These tools collect data from the running UI to find issues development-time
tools would miss, but may be limited by the completeness and coverage of the tests. Unfortunately,
past work has shown that mobile apps are often tested in an ad-hoc manner [16] or not at all [39].
Latte [57] eases the process of accessibility test creation by working with test cases written for
functional UI correctness, which are easier to author than UI integration tests. Latte tests for
accessibility by replaying test cases through available accessibility services, such as SwitchAccess
or TalkBack [29] on Android. While Latte can detect more accessibility issues than prior work, it
remains only as effective as the coverage of the test cases across the entire app.

Run-time tools [30, 36, 58] examine the running user interface through dynamic analysis, which
emulates the way an end user would see the app, and can find issues development-time tools would
miss [18]. Accessibility scanners, like Accessibility Inspector for iOS [36] and Accessibility Scanner
for Android [30], require developers to visit and scan each screen of an app, and they often do not
provide summarization across screens.
To alleviate the burden of manual navigation on the developer, other run-time tools use app

crawling to find accessibility issues. An app crawler is a program that runs to autonomously
interact with, explore, and collect data from apps. MATE [18] uses an app crawler for accessibility
testing through dynamic, random exploration of Android apps and detects accessibility issues on
encountered screen states. When an app crawler uses a random exploration strategy, it typically
uses a service (e.g., UIAutomator) to identify interactive elements on a UI screen and randomly
selects one of them which it will interact with through simulation of user actions. The crawler
repeats this process until it has reached a specified number of screens, UI elements, or when a time
budget is reached. To our knowledge, all past systems work on the Android platform and rely on a
view hierarchy and accessibility metadata to understand the app contents. While some common
Android components are accessible by default (e.g., View), this is often not the case for custom
widgets, and such UI elements may not be visible to app crawlers relying on accessibility services.

Both Xbot [14] and Alshayban et al. [4] crawl apps to collect accessibility issues but either rely
on app instrumentation or static analysis of source code to extract intents, which they note will
only work for a limited number of Android apps [14]. All three [4, 14, 18] appear to rely on Android
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Input Issue Type

View Hierarchy, Screenshot
Icon Labels: LabelDroid [11], COALA [49]
Visual or Display Issues: Owl Eyes [44], Iris [76]
Target Size: Alotaibi et al. [3]

Human annotated labels, Screenshot UI Element Detection: Screen Recognition [74], Ours
Icon Labels: Chen et al.[13], Screen Recognition [74]

Table 2. Prior work introduced methods detect accessibility issues using machine learning. The inputs to
these models include view hierarchies, screenshots, and human labels app interfaces to detect a variety of
issues types. Our work detects and surfaces missing accessibility elements (i.e., UI elements not exposed to
accessibility hierarchies) using UI element detection models.

Activity and heuristics to determine screen states, and primarily focus on generating issue counts
rather than producing a summarized report that developers can interact with.
More recently, the accessibility app crawler Groundhog [59] crawls apps through accessibility

services to detect additional classes of issues (i.e., locatability, actionability), producing a report
of issues, and a video to visualize navigational failures (i.e., TalkBack [29]). However, the paper
does not provide details on the interface for the output report or study how users interact with
it. A11yPuppetry [58] uses a record and replay approach with a similar infrastructure to replay
tests through accessibility services and reports a few classes of issues. In contrast, our system uses
an existing accessibility scanning tool within an app crawler, thus reports on more and different
classes of issues than A11yPuppetry. By leveraging a pixel-based app crawler, similar to Wu et
al.’s [72], our system can navigate to areas of the UI that would be inaccessible through accessibility
services, which Groundhog relies on. Prior studies [74] have demonstrated a large amount of apps
still have many UI elements and screens that are not exposed to the accessibility hierarchy. In
contrast to prior works [58, 59], we also present methods to report and summarize detected issues
and evaluate this summarization through a user study with app developers and QA testers.
In summary, prior approaches have detected accessibility errors through different ways of

exploring an app: manual capture, integration with existing UI tests, or automated app crawlers.
We instead focus on assembling the results of accessibility error reports, agnostic to the collection
method, into a single app report with an overall summary. We also present new technologies to
summarize unique issues, filter false positives, and enable developers to ignore issues in future
reports, which can help reduce noise when adopting such systems for regression monitoring over
time.

2.3 Machine Learning-Aided Accessibility Issue Detection
Beyond the tools and frameworks for accessibility testing, prior work has explored detection and
repairing specific accessibility issues (e.g., target size, unlabeled elements) using machine learning.
These models may be used within the prior tools and frameworks which currently rely on static or
dynamic analysis [30, 36] or heuristics. Machine learning models can operate on additional inputs
in addition to screenshots (Table 2).

View hierarchy based methods [3, 44, 49] train models on screenshots and semantic information
extracted from view hierarchies to generate icon labels for accessibility services [11, 49], repair size-
based accessibility issues [3], and detect visual display issues [44]. These approaches demonstrate
that machine learning can generically detect and even repair accessibility problems. In our work, we
apply a pixel-only based approach. This follows previous work on UI element detection [74] which
detects and repairs UI element labels for a screen reader. Pixel-only approaches, also used to generate
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Scope Method

Across Apps

CNN-based Object Detection: Gallery DC (mining design semantics) [10]
Autoencoder-based: Liu et al.(mining design semantics) [43],
Rico (similar screen search) [17]

CNN-based embedding: VINS (visual search) [8], Swire (sketch search) [33],
Screen Parsing (similar screen search) [73]

Within Apps

Hashing: Puppetdroid [26]
Heuristics: Zhang et al.(accessibility annotation) [75],
Bility (accessibility annotation) [66], Fragdroid (app crawling) [12],
Humanoid (app crawling) [42], Droidbot (app crawling) [41],
Jiang et al.(app crawling) [38]

Modeling: Feiz et al. [21], Ours
Table 3. Our work uses machine learning based UI Understanding to generate accessibility reports organized
by screen using a screen similarity transformer model. Prior work has used machine learning, hashing, and
heuristics to search for similar screens across apps or within apps.

icon labels [13, 74], may benefit from relying on the visible interface screen over view hierarchies
which can be unreliable and difficult to interpret [40]. We use machine learning approaches in
our system to detect a particular class of issues and to summarize and de-duplicate issues in the
generation of accessibility reports. Our system primarily focuses on reporting issues, and it could
be used in combination with prior work to detect issues and alert developers of accessibility issues
earlier.

2.4 UI & Screen Identification
Our work presents a new model for screen grouping and heuristics to identify UI elements across
different instances of a UI screen within a mobile app. This work contributes to a body of work in
computational screen and UI understanding that has been applied to diverse use cases. Some exam-
ples include accessibility [75], app crawling [42], and design search [10] (Table 3). We specifically
focus on work within UI Understanding for mobile applications. Mobile platforms can be more
challenging in some ways compared to other platforms (i.e., web) as the underlying source code
and UI hierarchy are often not available or are incomplete.
Across apps, some work builds models trained on UI screen datasets to support design search

for similar screens [8, 10, 17, 43, 73]. Swire applies a similar concept to search screens based on UI
sketches [33]. While some ML aspects of these works may aid in our screen grouping problem,
they apply screen similarity detection across similar screen types in different apps, while we aim to
group screen types within an app. Additionally, some of this work [8, 17, 73] does not appear to
incorporate visual information into the similarity problem, which we believe can provide important
cues for screen similarity.

Other work aims to identify “same screen” instances within an app. In this paper, the terminology
“same screen” refers to two screens within an app used for the same purpose, to accomplish the
same task, or to view the same type or category of information. This is adapted from the work
of Feiz et al. [21] which introduces a “screen similarity” model to identify same screen instances
within an app. This was primarily motivated by app crawling use cases (e.g., Humanoid [42]) as app
crawlers need to understand if the screen they are currently viewing is the same as one previously
encountered to focus efforts on covering unexplored areas of the app. Identifying “same screen”
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instances within an app is challenging as different instances of the same screen may have different
data, scrolling, have keyboards open, or dialogs opening and closing.

In this work, we developed an improved screen similarity model from Feiz et al. [21] which we use
both within an app crawler and to generated summarized accessibility reports which group detected
issues by screen. For same screen detection within an app, prior work has proposed heuristics-,
modeling-, and hashing-based approaches. Earlier works applied a perceptual hash [26] to detect
same screens within an app, but later work showed that hashing techniques have high precision but
very low recall [21]. In accessibility report generation, this performance could result in much noisier
and less usable reports. Zhang et. al. [75] present screen and UI element equivalency heuristics
based on identifiers and structures in Android view hierarchies. App crawling, a key use case for
same screen detection, relies on similar heuristics based on view hierarchy structures [12, 38, 41, 42]
which prevents them from being generalizable to other platforms. Feiz et al. [21] presents a machine
learning approach for same screen detection within an app. We build on this work, but we modified
the definition of “same screen” problem, collected cleaner annotations, and updated the model
architecture to produce embeddings for faster computation across large sets of screenshots. We
use this screen grouping model in our app crawler which explores apps to collect screenshots and
accessibility scans, and in report generation where we use the model to group accessibility scan
results by screen and de-duplicate them.

3 BACKGROUND & USER INTERVIEWS
This project began as a collaboration with our research team, the accessibility engineering team
from a large technology organization and a product manager in charge of app accessibility for a
different team in the same organization. From these stakeholders, we initially learned about the
challenges of collecting and assembling accessibility reports for a full app. To understandmore about
these challenges from a larger group, we interviewed eight accessibility-focused developers, testers,
and managers from five diverse product and research-focused teams at the same organization
(4M, 4F). All participants had been working in accessibility focused roles for at least one year;
however, the median years of experience working in accessibility engineering or accessibility QA
roles was five. Through a small set of structured questions, we discussed their experiences testing
app accessibility in 30 minute exploratory interviews. We provide a copy of the questions asked for
this study in the appendix (Appendix ??). The interviews were semi-structured, so we started with
these questions and asked further follow-up questions if warranted.
First, we asked participants to describe which parts of testing for app accessibility they found

challenging. Through our preliminary investigation of prior work, and interviews with accessi-
bility stakeholders, our hypothesis was that accessibility scanning tools could provide value to
developers and QA testers, but were having limited adoption during development and testing
due to many inefficiencies and limitations. Thus we asked participants to detail what they liked
and disliked about accessibility scanning tools. The primary tool our participants had used was
Accessibility Inspector [36], however, participants also mentioned using the Evinced scanner [20],
Lighthouse [31], and Android tools (e.g., [30]). While the participants sometimes wrote accessibility
tests and used automated scanners, they reported primarily manually testing their apps. From this
formative interview, we conducted a qualitative analysis of the interview transcripts [32] and the
following themes emerged from that analysis which center around the challenges the participants
encountered when using accessibility scanning tools and the reasons some participants noted for
not adopting them in their workflows as much as they would like.

Current tools provide no results overview: Our participants mentioned that since scanning
tools provide results per screen, they can’t easily see an overview of results – “I can’t really get an
overview of an app’s accessibility just from that tool” or “view the issues of a particular type across the
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app”. Some participants said it can be hard to give feedback on app accessibility to teams that may
not understand accessibility well or know what to test. Such teams might benefit from feedback
on issue patterns across the app (e.g., missing Large Text support), which for some participants to
compile may require “toggling on that feature and navigating through every single screen of the app
myself to get an idea of whether this app does or does not support those [accessibility features]”
Current tools are too noisy: Participants mentioned that results of current tools “can be

quite noisy at times and so we end up with a lot of false positives”. For someone less familiar with
accessibility features, “they have a really hard time understanding what’s signal and what’s noise
from the report”. Participants also mentioned many issues detected by these tools are lower priority
to fix – “false positives are confusing. There’s definitely a difference between elements that can’t be
visited in any way, and are totally inaccessible, compared to some of the smaller nit picks that get
presented”. This feedback echoes prior work on mobile [34] and web [1] accessibility testing tools
which often provide false positives, requiring testers to incorporate the results from multiple tools.

Manual scanning introduces inefficiencies: Participants also recounted the manual effort
and time to use accessibility scanning tools “it will take me a couple hours just to get through a
couple screens, like a few screens usually”. The amount of effort involved often leads them to scan
their apps infrequently. When multiple developers or teams contribute to the same app, manually
scanning after each change is infeasible. Accessibility regressions can be created and persist for
quite some time. It can also be infeasible to run these scans across the multitude of combinations of
devices and accessibility settings they would like to test.

3.1 Design Goals
From these formative interviews, we formulated the following design goals for a system to generate
accessibility reports for accessiblity scanners.

• D1: Reduce the time required for developers and QA testers to manually scan individual
screens with accessibility scanning tools.

• D2: Provide developers and QA testers with an overall accessibility report of scan results.
• D3: Enable developers and QA testers to reduce noise by ignoring false positives or previously
addressed issues.

For D1, we adopt an app crawler introduced in prior work [72] that we modified to scan each
screen using the Accessibility Inspector [36]. For D2, we provide an output HTML report in a live
webpage (Figure 5). We also provide a manual tool for accessibility scanning which generates a
multi-screen report. For D3, we developed features to ignore false positives & previously addressed
issues which are available in the web report.

4 ACCESSIBILITY REPORT GENERATION
Figure 2 illustrates our report generation approach. First, a data collector, such as manual capturing
tool, an app crawler, or a test case-based recorder, captures screenshots and accessibility data (a).
Next, a report generator generates a summarized report by first building a storyboard of same
screen instances detected by a screen grouping model (Figure 2.b). The report generator then uses
UI element de-duplication heuristics to de-duplicate issues (c) and hide previously ignored issues
(d) that users have marked in prior runs. Lastly, the report generator uses a UI element detection
model [74] to filter false positives (e) and produce a report with an overall summary and results
grouped by screen.
We implemented our prototype as a Flask-based web server that controls data collection via

a proprietary device cloud, generates reports, and hosts reports for later viewing by users. We
currently only support generating accessibility reports for iOS-based apps.
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Fig. 2. Our system for accessibility report generation. A data collector (a) captures screenshots and accessibility
audits, followed by a 4-stage process that produces a summarized accessibility report. The stages consist of 2)
“Build Storyboard” (b) which uses a pixel-based screen grouping model to build a storyboard of app screens,
(c) & (d) “De-Duplicate Issues” and “Ignore Issues” which use UI element matching heuristics based on a UI
element detection model to de-duplicate and filter out issues that QA users have ignored, and (e) “Filter False
Positives” which removes any issues with no corresponding UI element on the screen as detected by the UI
element detection model.

4.1 Accessibility Data Collection
The first step of report generation is capturing accessibility data to report (Figure 2.a). This is aimed
towards design goals D1 and D2. Our prototype offers two options for data collection: a manual
recording tool and a random app crawler using the architecture adapted from Wu et al. [72].
The random app crawler runs on a remote cloud device or a locally attached iOS device. The

random app crawler detects clickable UI elements on each screen using UI element detection [74],
and interacts with them to explore the app. It uses our screen grouping model to find new screens to
attempt to maximize coverage. On each screen, it captures an accessibility scan and screenshot and
may capture a screen in various states. This is a quicker option to generate a report, but provides
no guarantees of obtaining complete coverage over all screens in the app.
Users interact with the manual recording tool via desktop MacOS interface. The interface

connects to a locally attached device or simulator and provides a button “Run Audit” to capture an
accessibility scan and screenshot. While this does not directly meet design goal D1, the user cannot
examine reports as they are generated, and may be less likely to get distracted by the results until
they have finished capturing. Once finished, the system generates a summary report for all screens
captured by the user (D2). Using this data collection method requires manual effort, but gives the
user control over what screens are captured.
Both of these methods collect accessibility scans and screenshots. We currently use Xcode’s

Accessibility Inspector [36] feature via a command line tool on each device, which produces a JSON
report listing all detected issues with their associated bounding box on the screen. The Accessibility
Inspector supports 29 accessibility checks, categorized by Element Description, Contrast, Hit Region,
Element Detection, Clipped Text, Traits, and Large Text1. In the future, it should be possible to add
other accessibility scanning tools to our capture process, provided they can run on a live device
and produce JSON output.

1How well does Accessibility Inspector cover accessibility criteria for mobile apps? According to the WCAG guidelines,
all information presented digitally should be perceivable, operable, understandable, and robust [68]. W3C provides a
mapping of guidelines within these principles for mobile apps [67]. Accessibility Inspector largely includes checks under
the perceivable principle, such as resizable text, element descriptions, and sufficient contrast. Under operable, it includes
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Fig. 3. An example of an app storyboard generated by our screen grouping model. Screens grouped together
(e.g., A, C) were predicted as “same screen” by our screen grouping model. The arrows between groups mark
transitions between each screen(s) where interacting with a UI element on the origin screen transitions the
app to the destination screen. The red box (B) marks a missed opportunity for grouping in where the screen
has been scrolled but all four screens should still be considered to be the “same screen” since they are the
“Apple Watch User Guide” screen in various states of scrolling.

4.2 Build Storyboard
Data collectors may often capture multiple instances of “same screens” that appear slightly differ-
ently, perhaps because they are scrolled or contain dynamic content. If we reported the accessibility
scanner’s results for each screen instance individually, the overall report would be noisy and
contain duplicates. To mitigate this, the report generator aims to group together the results from
“same screen” instances into a single section of the report. To do this, the report generator uses
a screen grouping model that operates on app screenshots to build an app storyboard. The app
storyboard clusters the results from different instances of the same screen together (Figure 2.b). In
this work, we use the term “storyboard” from UI builders (e.g., Xcode Storyboards) which describes
a visualization of relationships between views in an app, rather than term “storyboard” to convey a
user story in UX design.
Figure 3 shows example storyboards generated by our model from a set of app screenshots

collected by an app crawler. We present the storyboards in a graph visualization of the screens
grouped together by our screen grouping model to help in visualizing the models full understanding
of which screens in the app should be grouped together. Clusters of screens placed together
(Figure 3.C) indicate the model considered those screens to be the same, whereas screens that
are not grouped together (e.g., A and C) are not the same. The arrows between the groups mark
transitions where interacting with a UI element on the origin screen would take the user to the
destination screen. The goal of the "Build Storyboard" step of our report generator is to generate
a representation it uses to group and organize the results in the accessibility report, which will

checks for minimum touch target sizes and accessibility actions. Finally, it includes some checks applying to understandable
such as grouping and element detection. Please see the documentation for more information on the checks it covers –
https://developer.apple.com/documentation/accessibility/performing-accessibility-audits-for-your-app.
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ultimately present the results for each group of screens in a separate tab to make them easier
for developers to digest (Figure 5). The report generator also uses the screen groups to create a
summarized overview of issues across the app. Screen grouping enables the report generator to
summarize the results without repeating the results for a single issue when it captures the same
screen with different variations (e.g., scrolled down, with extra UI elements). We describe this
de-duplication process in Section 4.3.

4.2.1 Screen Grouping Model. Screen grouping is a key technology used across multiple stages of
our system (Figure 2.b-d) to de-duplicate screens and issues. For screen grouping, we built upon
the Feiz model [21] in prior work. The input to this model is two screens, 𝑠1 and 𝑠2, and the output
is a binary prediction of “same screen” or “different screen”.

The original Feiz model was trained on a dataset constructed from 77k screenshots across 1,110
iOS applications [21]. The paper further details the data collection process used for capturing these
screenshots. Despite various experiments with model parameters, we were unable to improve the
original model’s performance beyond 75.8% F1-score when trained and evaluated on its original
dataset. Note that this F1 score is lower than previously reported [21], we believe due to different
choices in training, validation and test set splits. We discovered the annotation process in the
original work had a low agreement rate. To address this, many apps were dropped from the final
dataset. We subsequently focused our efforts on improving the annotation process, both to increase
annotation agreement and to make more data available for training and evaluation.
We examined 1000 failure cases from the original similarity transformer model trained on the

Feiz dataset [21]. Model prediction errors occurred primarily when same screen instances were
scrolled or had structural differences (e.g., keyboard open / closed, search with and without data)
and were predicted as different, or for different screens that were structurally and visually similar.
The annotated labels contained disagreements on some cases when screens had different tabs or
page controls active, or displayed different data.

4.2.2 Screen Grouping Data Collection. To improve the quality of this dataset for our report
generation use case, we collected an entirely new labeled dataset of 750,000 grouped screens from
6700 free apps using a similar data collection process to Feiz et al. [21]. To collect the 750k app
screens, ten annotators (i.e., crowd workers) manually explored apps through a remote device in a
web interface with the instruction to find as many unique screens as possible within a 10 minute
limit. While the annotators crawled the apps, the system captured screens every second provided
the screen changed. A separate team in our company hired and paid the annotators with legal and
ethical approval, similar to the review of an Institutional Review Board (IRB), and paid them a
competitive hourly wage based on their location.

A different set of 15 annotators grouped the screenshots of each app into same screen groups using
a card sorting style interface, similar to that of Feiz et. al. [21]. We generated initial groupings using
our trained screen similarity model with 75.8% F1 -score to cluster the screens. Thus, annotators
only needed to fix the model’s mistakes rather than starting from scratch. Annotators also discarded
invalid screens (e.g., home screen, loading screens, landscape orientation). The screenshots from
each app were only grouped by single annotator; accordingly, there were no disagreements in the
groupings of the screens within each app.
Our annotation guidelines defined same screen as two screens used for the same purpose, to

accomplish the same task, or to view the same type or category of information. For the annotation
task instructions, we defined a list of possible variations a screen can undergo to be considered the
same screen including:

• Same screen with different data
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• Partially scrolled down
• Sections expanded or collapsed
• Keyboards open or closed
• Non-modal application dialog open or closed
• Same modal menus or dialogs on top of different content.

We compiled this list iteratively where multiple researchers, who are also domain experts in UI
understanding, met multiple times to examine “same” and “different” screen examples in a large
dataset and resolved any disagreements.
As nearly all accessibility scanners operate on the topmost, non-occluded layer (e.g., contrast

checks), we modified Feiz et al.’s definitions [21] by grouping screens based on the topmost dialog or
layer of interactive content (i.e., two screens with the same dialog open over different backgrounds
are considered the same screen).

We trained the annotators on these guidelines through an extensive slideshow with positive and
negative screenshot examples of each category, along with explanations. The labeled data contains
70,882 groups across 6,332 apps, with a mean of 10.8 groups per app (Med: 10, Std: 7.3) and 3.3
screenshots per group (Med: 2, Std: 6.7). As the screens from a single app were only grouped by a
single annotator, we cannot report an IRR metric for these annotations. However, our company
employs a separate group of expert QA annotators who reviewed 10% of the annotations at random,
until they certified that the annotations achieved a 98% accuracy threshold using the annotation
guidelines as the source of truth. We compute the 98% accuracy value as the number of screens
that the QA annotators moved to a new group out of the total number of screens in the set.

4.2.3 Model Modifications. To understand the impact of these annotations, we trained two ad-
ditional screen grouping models to compare with the original Feiz model [21]. The first is the
original similarity transformer Feiz model trained on the new data we collected, and we created a
modified version of the Feiz model that produces an embedding for each screen. The Feiz model
is transformer model which applies a cross-encoder to predict similarity for a pair of screens by
minimizing the binary cross-entropy loss on the predicted similarity label.
One challenge with this pairwise model is that it can be computationally costly (𝑂 (𝑛2)) as

each screen in a set is added as it requires a new model call to compare a newly added screen to
each existing screen in the set. Our ultimate goal is for our reports to be generated on demand,
ideally within a few minutes. This model architecture would severely limit the ability of our report
generation system to be run efficiently and interactively. To mitigate this, we created a modified
Bi-Encoder embedding model that uses a transformer to generate an embedding for each screen
by encoding and pooling the output of pre-trained object detection model [76] on the screenshot.
The model takes in pairs of screens as input, and learns to minimize the distance between the
embeddings of pairs of same screens while maximizing the distance for pairs of different screens.
We also apply the masked prediction objective to this embedding model from Feiz et al. [21].

This modified architecture enables our system to compute screen embeddings for each screen a
priori and calculate the distance between embeddings to determine similarity versus conducting a
pairwise inference with all known screens. If the difference between the pair of screen embeddings
is less than or equal to a margin value, the model’s prediction is “same screen”. Conversely, if the
difference between the pair of screen embeddings is greater than margin, the model’s prediction
is “different screen”. The margin is a value that we tuned specifically for the Bi-Encoder model to
achieve the highest accuracy and best balance between precision and recall on the test samples.

We compare multiple versions of screen grouping models in our evaluation (Section 5.1).
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Train Val Test #Apps #Screens
Feiz Model - Baseline
SSim Transformer (FD) 70% 15% 15% 1,110 77k
SSim Transformer (1k) 70% 15% 15% 1,110 77k
New Dataset & Model - Our Work
SSim Transformer (6k) 94% 3% 3% 6,332 226k
SSim Bi-Encoder (Embedding) (6k) 94% 3% 3% 6,332 226k

Table 4. Details of the model baselines and new models we trained for screen grouping, along with their split
percentages (i.e., training dataset percentage – Train, validation dataset percentage – Val, and test dataset
percentage – Test) and dataset sizes by number of apps and screens.

4.2.4 Dataset Splits & Model Training. We split the data into training, validation, and test sets by
app to ensure that screens from the same app appear in only one set. We trained multiple versions
of the models on various subsets of the data. The original Feiz model on the original dataset [21]
(FD) uses split percentages of 70% training, 15% validation, and 15% test, and the dataset contains
over 77k screens across 1,110 apps. To help us understand whether our new annotations improved
the model’s performance, we trained another version of the original model on a 1k (containing
the screens from the original 1,110 apps) subset of our newly annotated data using the exact app
splits and percentages as the original model. Table 4 summarizes the dataset sizes and splits for
these two models. The only difference between these two models is that the input data was entirely
re-annotated.
To evaluate the impact of our significantly larger dataset, we trained two additional models on

our full 6k dataset including the original Feiz model and the modified Bi-Encoder embedding model.
This dataset contains all app’s data from our screen grouping data collection of over 226k screens
across 6,332 apps. To enable the models to be more comparable to the baselines, we added all apps
and screens not in the original 1k subset to the training data split, and kept the validation and test
sets the same size. As a result, the training splits for the models we trained on the 6k dataset were
%94 training, %3 validation, and 3% test. Table 4 summarizes these splits and dataset sizes.

The training input to each model are pairs of “same” and “different” screens generated from the
annotated groups of each app. We include all possible pairs of screens within a group as “same”
screen samples and all possible pairs of screens not in the same group as “different” screen samples.
The full 6k dataset is significantly unbalanced, containing 8.2 million pairs of “different” screens
and 3.3 million pairs of “same” screens. Section 5.1 details our evaluation of these models.

4.2.5 Storyboard Generation. To build a storyboard of app screens using this model (Figure 2.b),
the report generator processes each screen collected from the app consecutively. When it processes
the first screen, the storyboard generator computes the screen’s embedding score using the screen
grouping embedding model. It then creates a new screen group for it and updates the mean
embedding score for the group. When the storyboard generator adds a new screen to the set, it
needs to determine if this new screen belongs in any existing group or if it belongs in its own
new group. To do this, it computes the screen’s embedding using the screen grouping model, and
then computes the difference between the embedding and the mean embedding for each group
of screens already in the storyboard. It then assigns the screen to the group with the smallest
distance between the embedding scores, if the difference is less than the margin value of 0.34. If the
difference from the screens embedding to the mean embedding from any group is greater than the
margin value, the storyboard generator creates a new group for it.
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Fig. 4. UI element groupings used by UI element de-duplication heuristics to find matching UI elements in
a new screen. The examples include several UI types including Tab Button, Text Field, Container, Toggle /
Checkbox, Slider, and Segmented Control.

The storyboard generator also adds transitions between screens (i.e., arrows in Figure 3) based
on the order the screens were captured in the crawl or recording tool. Our report generation system
does not directly use these transition edges in creating its output report; however, they can be
potentially applied to other use cases that would like to apply similar screen grouping to improved
app understanding.

4.3 De-duplicate Issues
A key requirement of report generation motivated from our interviews is to avoid noise (design goal
D3). Formative study participants noted that accessibility scanners can often produce noise (see
Section 3), so our system should reduce noise when summarizing results across multiple screens.
After the Build Storyboard step, our report generator (Figure 2.c-e) applies heuristics to identify
multiple instances of the same element across screens and de-duplicate them, and summarizes
results on each screen and across an app. The system applies these same heuristics to ignore issues,
which users can mark in the report interface (Figure 5), and re-identifies them on future reports of
the same app. The goal of these heuristics is to find the same UI element across two different instances
of the same screen within an app.

4.3.1 Pre-processing of template screen and UI element. The input to the heuristics is a pair of same
screen instances formulated as a template screen 𝑇𝑠 and UI element 𝑇𝑢𝑖 , and a new screen 𝑁𝑠 . The
goal is to find the best matching UI element 𝑁𝑢𝑖 within the new screen 𝑁𝑠 for a template UI element
𝑇𝑢𝑖 .

To de-duplicate UI elements, the heuristics first pre-process the template screen 𝑇𝑠 , template
UI element 𝑇𝑢𝑖 , and new screen 𝑁𝑠 by detecting UI elements in 𝑇𝑠 , 𝑁𝑠 and grouping them using
modified grouping heuristics introduced by [74] (see Figure 4 for examples of the UI element
groupings constructed by these heuristics):

Tab Button: A tab button group often contains a icon and text, and sometimes contains only a
icon.
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Toggle or Checkbox: A toggle (or checkbox) group contains that element and its text description,
which is often the closest text on the same row.

Segmented Control: A segmented control group contains the border and the text of a segmented
control.

Text Field: A text field group contains the border of the text field and UI detections inside it.
Slider: A slider group contains the slider and text on the same row and the closest text above.
Container: A container group contains the border of the container and UI element detections

inside it.

4.3.2 Finding the best matching UI element. Our de-duplication procedure then applies heuristics to
find the best match for a template UI element𝑇𝑢𝑖 in a new screen 𝑁𝑠 by comparing each UI detection
in 𝑁𝑠 with 𝑇𝑢𝑖 to get their similarity scores and selecting the one with the highest similarity score.
The heuristics for computing similarity scores are as follows based on the UI element type of 𝑇𝑢𝑖 :

Text: Make all text lowercase and keep only alphanumeric characters and spaces. Apply fuzzy
matching to compute similarity score [6].
Icon and Picture: Search the area around the Icon or Picture detection using image template

matching [51] (template = the cropped pixels of 𝑇𝑢𝑖 ) in multiple scales2. The similarity score is the
max value of template matching among all scales.
Tab Button: If the template Tab Button contains only an Icon, find the Icon using template

matching. When the template Tab Button contains both Icon and Text, run the Text matching
method.

Toggle, Checkbox, Segmented Control, Slider and Text Field: Run the Text matching above
on its grouped Text.
Page Control and Dialog: Normally, there is at most one Page Control or Dialog on a screen.

When there are multiple, compute the distance (normalized with screen width) between 𝑇𝑢𝑖 and
𝑁𝑢𝑖 . The similarity score is 1 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 .

Container: If a Container only contains Icons, use the template matching procedure. Otherwise,
run the Text matching above on each contained Text (in reading order).
If no UI elements on 𝑁𝑠 pass a threshold3, then there is no match. Otherwise, we pick the UI

element with the highest similarity on 𝑁𝑠 . When a Text or Icon is in a grouping, our method first
determines if the grouping is a match, and then prioritizes candidates in the same grouping.

4.4 Building the Final Report
Finally, the report generator builds the final report by detecting and hiding previously ignored
issues and filtering false positives (Figure 2.d-e). These are key stages towards design goal D3 of
reducing noise in the report.
First, the report generator retrieves the ignored issues, elements, and screens from a database.

Report users can save these using the interface pictured in Figure 5 by clicking the Ignore button
(represented by an eye icon). For each ignored issue, the report generator finds the matching screen
it is located on in the report using the screen grouping model. On the matching screen, the report
generator uses the UI element de-duplication heuristics (subsection 4.3.2) to find a matching UI
element. If any of the same issue types are already reported for this UI element, the report generator
marks them as “ignored” and moves them to a collapsed section.

Second, the report generator filters false positives using a basic heuristic (Figure 2.e). Any issue
reported in the scanner’s results with no visible UI element overlapping it is assumed to be a false
positive and the report generator hides it in the output report.
2S = 𝑇𝑠𝑤𝑖𝑑𝑡ℎ

𝑁𝑠𝑤𝑖𝑑𝑡ℎ
; Scales = [0.91*S, 0.94*S, 0.97*S, 1.0*S, 1.03*S, 1.06*S, 1.09*S]

3Text: 90%, Icon: 80%, Picture: 50%, as determined empirically on our screen grouping dataset detailed in subsection 4.2
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Fig. 5. The prototype interactive HTML report generated by our report generation system. The interface has
three main areas: a) A carousel displaying all screens captured in the report, b) A menu to toggle between
the “Summary” view which is currently selected, and screen-by-screen views represented by thumbnail
screenshots, and c) a table of summarized results of issues found, grouped by category. The report provides
actions users can take including ignoring, viewing suggestions, filing bugs, and expanding the screenshot.

The report generator processes the underlying screen and audit data per screen group detected
in the storyboard generation step, and assigns a screen group identifier to each screen within a
group. It then produces a self-contained JSON file with a summary of unique issues detected for
each screen group of the app and an overall summary across screens categorized by accessibility
issue category (e.g., Element Description, Dynamic Type) and subcategory (e.g., Element has no
description, Dynamic Type partially unsupported). The JSON is then transformed into an HTML
report, shown in Figure 5 which groups the results by each screen group into tabs along the side.
It also provides a “Summary” tab that contains a table of all results across the app and a row of
all screens across the top. Each screen tab, represented by thumbnail screenshots of screen in the
group, shows a similar view as the “Summary” tab within only the results for that screen group
and the screen(s) within it. Since our system generates the report in a self-contained JSON file, the
report could be further processed in a continuous integration pipeline in the future.

4.4.1 Report Interface. The interface displays a summary table to explore all issues found across
the app (Figure 5.C) which it categorizes by issue type (e.g., Element Description) with an overall
count of each category. A person examining the report can click categories or issue headers to
display all screens impacted by the issue (in Figure 5.A). The report interface highlights impacted
UI elements on screens currently being inspected. To view the results for a specific screen, the
report user can click through each screen tab along the side (Figure 5.B), which the report visualizes
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P R F1 Acc. T(s)
Feiz Dataset - Baseline
SSim Transformer (FD test set) 76.9% 74.8% 75.8% 92% -
SSim Transformer (1k test set) 77.1% 87.1% 81.8% 94.5% -
New Dataset - Our Work
SSim Transformer (1k) 82.2% 94.1% 87.7% 96.3% -
SSim Transformer (6k) 89.5% 88.2% 88.8% 96.9% 42.2s
SSim Bi-Encoder (Embedding) (6k) 91.1% 81.2% 85.9% 96.7% 5s

Table 5. Performance results for the screen similarity (SSim) transformer and Bi-Encoder embedding based
models (distance threshold 0.34) demonstrating an improvement from our work of 13% in F1 score from the
baseline.

with small thumbnail images. The reports on each screen tab are presented similarly to those on
the summary tab.

The interface provides a few options to triage and reduce noise in future reports (design goal D3),
including bug filing, or ignoring specific issues, issue type, category, or screens in a future report.
The interface hides the ignores (in a collapsed section) for this app using the screen grouping model
and UI element de-duplication heuristics as previously described. The ignores can be removed at
anytime through a separate section. Beside each issue row, the report UI includes a question mark
button which provides additional info and fix suggestions for the issue. The interface also displays
a storyboard of the screens of the app captured during data collection on a separate tab in the
report (not pictured but similar to Figure 3).

5 TECHNICAL EVALUATION
To evaluate the accuracy of our report generator, we evaluated the technical accuracy of two of its
subcomponents – our screen grouping model and our UI element de-duplication heuristics. For the
screen grouping model, we report the overall results on the test dataset, shown in Table 5, and for
UI element de-duplication, we collected and evaluated the heuristics on a large evaluation dataset.

5.1 Screen Grouping Model
Overall, we can see that the transformer trained on 6k is the best performing model (Table 5),
although the transformer trained on 1k performs surprisingly similarly. The transformers trained
with new annotations also perform noticeably better than those trained on the old annotations.

We also evaluated the transformer trained on FD (Feiz dataset [21]) with the test set from 1k.
Interestingly, this model performs better on the 1k test set than the FD test set, which may indicate
it was able to learn some concepts through annotation noise in FD that were more applicable in 1k.

The Bi-Encoder embedding model, also trained on the full 6k dataset, performs slightly worse but
still very close in accuracy to the transformer model. For the Bi-Encoder model, we use a distance
threshold of 0.34 for “same screen” (experimentally determined in our model evaluation). This
model achieves within 3% F1-score of the similarity transformer and is able to generate a storyboard
8.4 times faster than the similarity transformer.

Depending on user preference, our system can adopt different models. We currently use the 6k
similarity transformer in our systems as our users noted that accuracy was more important to
them in our formative studies. However, in cases where the system requires quick performance
for generating reports for larger apps, systems can adopt the Bi-Encoder embedding model for
improved system efficiency.
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Fig. 6. The interface crowd workers used to label the evaluation set for UI element de-duplication. Each
task displayed a left and right screenshot of same screen instances. Crowd workers drew boxes and labeled
corresponding UI elements on the right screenshot, using the left as a baseline.

5.2 UI Element De-duplication Heuristics
To evaluate the accuracy of our UI de-duplication heuristics, we collected a dataset of 138k UI
element correspondence labels across 25k same screen pairs from our annotated screen grouping
dataset. We employed the same set of 15 annotators to label the data for this task as for our screen
grouping model data collection (Section 4.2).

5.2.1 Data Collection & Annotation. The annotators used the labeling interface pictured in Figure 6.
Each annotation task contained two screens. The left screen (𝑇𝑠 ) showed 6-8 highlighted template
UI elements with corresponding numbers of UI elements to be matched in the right screen (𝑁𝑠 ). To
train the annotators, we provided them with several examples of UI element correspondences and
a set of definitions. Within each pair, our annotators consider two UI elements to be a match if
they a) serve the same purpose (i.e., have the same functionality or convey the same information),
b) are actionable and would lead to the same next screen in the app, and c) have the same grouping
(e.g., an icon inside a container should be matched with the same icon and not the container). Each
task, consisting of a pair of screens and UI elements to be matched, was annotated by a single
annotator. We did not replicate these annotation tasks with multiple annotators. However, our data
was also reviewed by the expert QA team (mentioned in Section 4.2), and they randomly reviewed
the accuracy of batches of 10% of the data until a 98% accuracy threshold was reached. If the initial
accuracy of the 10% did not not achieve the 98% threshold, all batches of data were reviewed and
corrected by the 15 annotators and the QA expert annotators.

In the annotated dataset, half of the screen pairs (53.6%) are very similar (MSE [63] < 30). 4.4% of
pairs are the same screen with some content scrolled, while the remaining pairs have other content
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Precision Recall F1 Time
Template Matching Only 87.5% 96.3% 91.7% 2.57s
Exact Text Matching Added 89.4% 95.4% 92.3% 1.11s
Fuzzy Text Matching Added 88.9% 96.8% 92.7% 1.12s
All Heuristics 97.7% 98.7% 98.2% 0.35s

Table 6. Performance results for UI element matching4, reported by the subset of matching heuristics applied.

Fig. 7. Examples of True Positive (a), False Positive (b), and False Negative (c) of UI element de-duplication
heuristic results. The red box indicates target UI on original screen, while the green box indicates the matched
UI on the new screen. In (b), the text above New York and Honolulu was matched incorrectly. In (c), the
heuristics (for icons, using template matching) did not find a match.

changes (e.g., added UI elements, removed UI elements, text content changes). In the end, 17,913
(13.0%) template UI elements (𝑇𝑢𝑖 ) do not have any matching UI element in the new screen (𝑁𝑠 ).

We evaluated these heuristics on the 138k UI element matching annotations. To improve our
heuristics, we examined and updated them on a small dataset of 991 screen pairs (5,420 template
UIs), and then evaluated the heuristics on our full dataset. We report precision, recall, and F1-score
metrics using the following definitions:
True Positive: The match found by our heuristics and the match found by the annotators are

the same UI element.
True Negative: Our heuristics did not find a match and the annotators did not find a match.
False Positive: Our heuristics found a match but the annotators did not, or the match found by

our heuristics and the match found by the annotators are NOT the same.
False Negative: Our heuristics did not find a match but the annotators found a match.

4The average matching time for each template UI element was measured on a Macbook Pro with 2.4 GHz 8-Core Intel i9 /
32G memory
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Table 6 presents the results of this evaluation with a few variations. First, using template matching
alone achieves 91.7% F1-score, in part because many non-Icon UI elements are not correctly matched.
Next, we improve on the template matching method by adding exact text matching, which improves
the F1-score by 0.6% and doubles the speed. Adding fuzzy text matching to the previous methods
further improves the F1-score by 0.4%. Fuzzy text matching tolerates small mistakes introduced by
OCR imperfections, but may also create error when there are Text elements with small differences
(see appendix). None of the baselines approach our full set of heuristics, which achieved a F1-score
of 98.2%.

We also examined the performance of our heuristics on three common cases of same screen pairs.
For screens with very few differences our method achieves very high accuracy (99.2% Precision,
99.5% Recall, 99.4% F1-score). It also works well on scrolled screen pairs (91.7% Precision, 96.8%
Recall, 94.2% F1-Score), and screen pairs with other content changes (95.1% Precision, 97.0% Recall,
96.1% F1-Score). We examined the failure cases and share common patterns in the appendix. Figure 7
shows an example of a true positive, false positive and a false negative match produced by our UI
element de-duplication heuristics.

6 USER STUDY
To evaluate our report generation system, we conducted a user study to better understand how the
system can impact QA testers and developers’ ability to gain awareness and prioritize issues to fix.
We evaluated the following research questions:

(1) How does the mode of accessibility scanning impact users’ interpretation and summarization
of accessibility issues?

(2) How do users perceive the quality of automatically generated reports collected using an app
crawler?

(3) How might accessibility reporting tools support prioritization and quick discovery?
(4) How can accessibility reports fit into participants’ workflows?

6.1 Participants
We recruited 19 (5F, 14M) participants across a large technology company to take part in the study,
across varied roles including software engineer (9), QA or Automation engineer (7), accessibility
evangelists (1), and managers (2). Participants mean self-rated expertise in iOS app development
was 3.31 (Med: 4, Std: 1.6) and in accessibility testing was 3.8 (Med: 4, Std: 1.01). Participants self-
reported their expertise in these two categories from a scale of 1 to 5, including: 1 - No experience,
2 - Beginner, 3 - Advanced Beginner, 4 - Intermediate, 5 - Expert. 18 participants were sighted, some
used varying degrees of magnifications features, and 1 participant used a screen reader. None of
these 19 participants participated in our formative study summarized in Section 3. We selected an
entirely new group of participants for this study as the study occurred more than one year after
the formative study.

6.2 Procedure
We first asked the participants to describe their prior experience in using accessibility testing and
reporting tools. Then, participants completed 3 accessibility auditing tasks in a counterbalanced
order. For each task, we instructed the participants to conduct accessibility audits of 3 different
apps using 3 different sets of tools. The three sets of tools included:

• Single screen accessibility inspector (SS) - This tool, shown in Figure 8.A, supports single screen
scanning with a button “Run Audit” which when clicked returns a list of possible issues for a
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Fig. 8. Xcode’s Accessibility Inspector [36] in single screen mode (SS) with the scanner’s results for an iPhone.
The Inspector has four main areas: (A) a table of detected issues for the current screen that a user requests
by clicking the “Run Audit” button, (B) Fix suggestions that appear when a user clicks on the “?” icon on a
selected row, (C) A preview window with a screenshot of the impacted UI element, and (D) a device (either on
a simulator or live), or an application window. Our study evaluates two modes: SS, which provides features
A-D, and MS, which provides features A-E. (E) adds a history of scanned screens and headers to summarize
result counts by category.

screen across 29 possible issue types. Clicking “Run Audit” clears the results from the prior
scan.

• Multi screen accessibility inspector (MS) - Using SS, users cannot compare results across screens
directly in the tool as results are cleared when scanning a new screen. With MS, we added
features targeted to help users summarize and prioritize issues across multiple screens, while
still requiring manual navigation and scanning. MS contains a header on the results for
each screen with the number issues found in each category for that screen (e.g., 3 Element
Description, 2 Contrast), and adds a history to track results from multiple screens (Figure 8.E).

• App crawler with generated report (AC) - This tool provides a pre-generated accessibility report,
generated by our system’s app crawler, with results hosted in a web page for participants to
examine (see Figure 5 for an example report).

The output of the SS and MS tools also includes explanations of each issue type in a submenu,
along with fix suggestions for that issue category (Figure 8). The AC tool includes the same
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3-5 key issues:
• No dynamic type support across entire app, text needs to scale.
• Contrast too low on tab bar items and on segmented control type thing at the bottom.
• Contrast nearly passed on text in hamburger menu.
• Buttons on restaurants screen used image name and were not labeled.
• Grouping on the coupons was incorrect, should have been able to individually focus on
items or otherwise get at the information in the coupons.

Fig. 9. An example of a list of key issues compiled by a participant in our user study for an accessibility
auditing task, created with the assistance of the provided scanning and reporting tools - SS, MS, and AC. In
this case, the participant used AC to audit app B.

descriptions and suggestions in the interface as shown in Figure 8. Before participants completed
each of the three tasks, we showed them a brief (∼2 min) tutorial video demonstrating the key
features of each tool and how to use it.

6.2.1 Tasks. For each accessibility auditing task, participants used each of the three tools to conduct
accessibility audits where the output was a list of 3-5 key issues across the app to be sent to a
development team to fix, along with the output of any scanning or reporting tools. This type of
task is common with accessibility auditing with automated tools where the auditer, often a QA
tester, groups and prioritizes issues before handing them over to the developer [34]. We instructed
participants to add context to the list to help the developers reproduce or interpret it, which could
also include screenshots. Figure 9 shows an example list created by one of our participants.

All participants had some experience with accessibility testing, and should be familiar with the
accessibility issue types detected by our tools. However, in they case they did not understand an
issue reported by the tool, they could read the provided descriptions and suggestion information in
each interface or ask the researcher conducting the study clarifying questions. We did not give
them specific guidance for issues to focus on, as we wanted to see how they used our tools to
prioritize the issues given their own expertise.

6.2.2 Task Workflow. Participants completed 3 such app auditing tasks where we assigned one
tool (as listed in 6.2) and one app to audit for each task. We counterbalanced the order participants
used each tool and the apps being audited using a Latin square ordering across participants.
As we found during the formative study, participants typically also manually validate issues

found by accessibility scanning tools. Therefore, we also allowed participants to manually validate
issues reported by tools using a locally attached iPhone. Participants could enable VoiceOver to
manually validate VoiceOver related issues, for example, or they could toggle on accessibility
settings such as Dynamic Type. During the study, we did see that participants did often turn on
accessibility features to manually validate the issues reported by our tools.
In practice, it is challenging to recruit professionals in roles such as those of our participants

for studies lasting longer than one hour, so we kept each session to 45 minutes in length. We
gave participants six minutes to complete each auditing task. The reason for making this task
six minutes was twofold. First, we wanted to see how our tools could support conducting quick
app accessibility audits. Second, this was also the maximum time we could allow for each task
and keep the total session length under 45 minutes while leaving time for the video tutorials and
study context, transitioning between tasks, follow up interviews after each task, and a follow up
interview and survey at the end of the study. We piloted the study several times to optimize the
timing of each component.
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After the participants completed the 3 tasks, we interviewed them and they completed a follow-up
survey to compare and contrast their experiences using each available tool for the task.

6.2.3 Materials. For the auditing tasks, the participants audited three publicly available apps
(which we refer to as app A, B, and C) from the top 100 apps for each of three categories in the App
Store initially at random; and then to have apps with a roughly equivalent complexity and number
of accessibility issues. The selected apps are from the categories of: Food & Drink (A), Shopping (B),
and Sports (C). We ran our app crawler on each app to produce a report (like that seen in Figure 5).
The number of screens found in each app was 39, 63, and 58 for apps A, B, and C, respectively. The
accessibility report (AC) surfaced 444, 596, and 522 accessibility warnings, respectively.

6.2.4 Design & Analysis. We recorded audio for each session and took notes on how many screens
each participant scanned for the SS and MS tasks. We saved each participant’s accessibility audit
list of 3-5 key issues in a document. Two researchers conducted a qualitative thematic analysis [32]
of the interview transcripts using an inductive method. Two authors also rated the quality of listed
issues with a rubric to measure the specificity, scope, and importantness of the issues reported
by participants in their lists. We detail this rubric along with the results of RQ1. We statistically
analyzed the results of the ratings using an aligned rank transform analysis [71]. Some of the survey
questions included Likert scale responses, which we also statistically analyzed using an aligned
rank transform [71].

6.2.5 Ethical Review and Consent. A user studies review board internal to our company reviewed
and approved our study. This board reviews the ethics of all human subjects studies and data
collection procedures conducted within our company. All participants in our study signed an
approved consent form prior to the session and were able to freely end the study at any time they
chose.

6.2.6 Apparatus. The participants completed the tasks on a MacBook pro running an M1 Max chip
and MacOS Sonoma. They used a locally attached iPhone, running iOS 17.0, to run the accessibility
auditing tools using SS and MS modes of the Accessibility Inspector, shown in Figure 8. We pre-
installed the apps for each auditing task on the device. Since the Accessibility Inspector is hosted
as an Xcode developer tool, Xcode was also running on the MacBook. The participants also had a
Notes file open to create their issue lists, and Safari was open to a tab showing the AC report. The
studies took place in person in a conference room. A researcher, also an author on the paper, was
in the room to facilitate the sessions and interview the participants. The researcher also took notes
and recorded audio. For some sessions, a second researcher was present in person or remotely via
Webex to observe and take notes.

6.3 Results
In this section, we summarize the results per each research question we examined in the study. For
any numerical results including comparisons of all three scanning tools, we include the results
for 18 of the 19 participants. We report the screen reader user’s results separately as they only
completed two tasks during the allotted time for the session. However, they provided valuable
feedback that may make our system more accessible in the future to screen-reader users. We also
included some of their feedback in our qualitative analysis reported for RQ3 and RQ4.

6.3.1 RQ1: How does the mode of accessibility scanning impact users’ interpretation and summariza-
tion of accessibility issues? First, we report which tool the participants preferred the most out of
the three auditing tools they used. Overall, 13 participants preferred AC (app crawler) the most,
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while 2 preferred MS (Multi-screen accessibility inspector) and 1 preferred SS (Single-screen acces-
sibility inspector). Two participants did not prefer any specific tool. One of those two participants
mentioned they still preferred manual testing over all tools as they thought it would be faster to
move through the issues by hand. The other participant mentioned seeing value in all three tools
for different tasks.
Participants gave varied reasons for preferring AC the most such as “giving a more holistic

overview”, “saving manual effort”, “removing the dependency on the Xcode and the device”, being
“more sharable”, and “reducing friction and context switching”.

Which tool helped participants create a better accessibility audit list? To better understand how
each tool impacted the participants’ key takeaways from their audits, which they compiled in
the form of accessibility audit lists, we collected the users’ satisfaction ratings with their lists.
Participants were overall more satisfied (using a 5-point Likert scale for satisfaction) with their lists
created using AC (Mean: 4.27, Med: 4, Std: 0.75, n=18), compared to MS (Mean: 3.61, Med: 3, Std:
0.91, n=18) and SS (Mean: 3.5, Med: 3, Std: 0.86, n=18). We ran a non-parametric analysis of variance
on the Likert scale data using the Aligned Rank Transform [71] with Tool, and App as factors and
Satisfaction as the output response. The ART analysis indicated no statistically significant effect
on Satisfaction of App (F(2, 28) = 0.52 = n.s.), but there was a significant effect of Tool (F(2, 28) =
5.09, p = 0.024). Posthoc pairwise comparisons ran using the ART-C procedure [19], and corrected
with Holm’s sequential Bonferroni procedure, indicated that AC versus MS was significant (t(28) =
3.17, p = 0.007) and AC versus SS was also significant (t(28) = 3.49, p = 0.005). No other pairwise
comparisons were significant.

The accessibility audit lists (Figure 9 shows an example) contained issues related to dynamic type,
missing labels, poor contrast, and small target size which are all issues reported by the underlying
scanner. We also manually validated a subset of these issues ourselves on the apps and found the
vast majority of them were real issues that should be fixed. However, participants also found and
listed some issues through manual testing on the provided device. As satisfaction can be subjective,
we also evaluated the contents of the lists using a rubric we developed. Two authors rated the
issues in each list, without awareness of which app and condition the list was created with. The
authors’ rubric consisted of three categories - Specific, High Level, and Important. For Specific, we
rated each issue on how easily we could deduce the UI elements or screens impacted by the issue.
For high level, we rated each issue on whether it applied to a single element (1), a single screen (2),
or multiple screens across the app (3). For Important, we rated the severity of the issue based on
whether it would block any major usage of the app for key accessibility features (e.g., Voice Over,
large text) on a scale of 1 to 3. Our goal through this rubric was to evaluate whether any particular
tool helped participants create lists covering a wider scope of important issues across the apps.

Each rater rated all 163 issues listed by the participants along these dimensions. After rating, if
any rating differed by at least two for a category, the raters discussed the grading and resolved
disagreements if possible. Ultimately, the raters achieved an IRR (Percent Agreement) of 0.80 and
IRR for ratings differing by 1 or less was 0.99.

Overall, the mean ratings per listed issue across all three modes were very similar for Specific –
AC was 2.38 (Med: 2.5, Std: 0.61) while MS was 2.37 (Med: 2.5, Std: 0.65) and SS was 2.32 (Med: 2.5,
Std 0.63). However, there was a larger difference for High-Level – The ratings for AC (Mean: 2.12,
Med: 2, Std: 0.79) were 9% higher than MS (Mean: 1.95, Med: 2, Std: 0.72) and 16% higher than SS
(Mean: 1.83, Med: 1.75, Std: 0.78). Finally for Important, the ratings for AC (Mean: 2.23, Med: 2.5,
Std: 0.7) were 13.3% more than MS (Mean: 1.97, Med: 2, Std: 0.76) and SS (Mean: 1.93, Med: 2, 0.74).
While there were differences between the means between tools, we found these differences not
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significant using the Aligned Rank Transform [71] for non-parametric data with Tool, Experience,
and App as factors.

6.3.2 RQ2: How do users perceive the quality of automatically generated reports collected using
an app crawler (AC)?. Overall, participants rated the AC report as “clean” (Likert scale, 5: Very
clean, 1: Very messy) with a median rating of 4 (Mean: 3.85) and rated the screen grouping quality
(Likert scale, 5: Very accurate, 1: Not accurate) as accurate (Med: 4, Mean: 3.65). When rating screen
grouping quality, we asked participants to open the AC report and showed them a few examples
of grouped screens across the report, as most participants did not notice this feature right away.
Participants were also not highly familiar with the structure of each app and as such their responses
to this question may not be as grounded as they might if they were the original developers of the
apps.

6.3.3 RQ3: How might accessibility reporting tools support prioritization and quick discovery? We
additionally examined whether any particular tool or features of any tool helped in prioritizing
and summarizing issues by asking the following questions:

• Which tool helped you discover the issues most quickly?
• Which tool helped you most to find the most common issues?
• Which tool helped you most to prioritize the most important issues?

Which tool helped you discover the issues most quickly? The app crawler was rated as the most
helpful tool in discovering the issues most quickly by 14 participants. Participants were also able
to scan an order of magnitude more screens across the app using the crawler (A: 39, B: 63, and C:
58) vs the other modes. Using SS, participants scanned 3.9 screens on average (Med: 3, Std: 2.78)
and with MS they scanned 4.5 screens on average (Med: 4, Std: 2.91). Participants (n=12) noted the
manual modes could be a bottleneck, time consuming, and tedious, especially with limited time
allocated during the study.
P2:“(SS) took too much time and i wouldn’t have been able to even get all the views up to look
through them in time ... It was a bottleneck to have to keep loading and running the tool on each
view.”
Another aspect of effort saved on the AC mode participants noted (n=5) was more hypothetical

future use cases in that the report would ultimately “reduce friction” by removing dependencies on
setting up a device for testing.

P1:“I don’t have to worry about being on the latest version or any incompatibilities ... I can just go
to the website with all the data, interact with it, file my bugs and then go from there.”
Participants (n=6) also felt they were able to get more coverage and more information across the

app to make decisions with the app crawler as compared to the other modes.
P13:“But, yeah, I guess for even for, for contrast issues and stuff, like, the last tool is really great,
because I felt confident that we got like, a really good look at the entire app.”

Which tool helped you most in finding the most common issues? The majority of participants
reported that AC best helped them to find the most common issues (14 participants) across the app.
Participants (n=8) noted that AC assisted them in finding the most common issues by providing
a summary and counts for each category across the app. Participants noted that the counts and
summary helped them to spot more prevalent issues across the app, like missing support for
Dynamic Type, a pervasive issue among the apps tested in our study.
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P12:“You can click here if you want to know the count, but I’m gonna give you the full list and and
after while you’re going to be able to just to answer this and be like yeah, we got a big problem
with the Dynamic Type. I just thought that was such a great delivery.”
Counts of issues and a “history” of scan results were also helpful to participants when using MS.

Two participants mentioned this helped them find the common issues most by looking for issues
appearing in multiple scans.
P9:“I guess in the multiple, like, for example, if I’m seeing this area is too small and I’m seeing it
multiple times. I kind of like, okay, this is maybe like a main issue on this.”

Which tool helped you most to prioritize the most important issues? When asking participants
which tool helped them find more important issues, 7 participants chose AC while the remaining
chose MS (6), SS (1) and Multiple Tools (2) and None of the above (2). Participants that chose either
MS, SS or Multiple Tools mentioned that because the AC randomly explored the app, they had no
control over whether important user tasks were covered in the app. In the other modes, they could
quickly review key user scenarios by controlling which screens they scanned.

P14:“If we can, if we can attach a process to this, and then I’m just going through, let’s say, or an
ordering flow, and then generates the report for this ordering flow ... let’s just say, hypothetically,
my team is in charge of building the order flow. I’m not going to care about accessibility of the
other screens”
This suggests that participants may benefit from having a mode that supports both automated

exploration and control over which user scenarios and tasks are explored by the app crawler.

Prioritization and Discovery: Strengths and Potential Improvements. One key theme in our study
was that a high level report across the app gave participants new capabilities and benefits compared
to manual scanning modes. Participants (n=14) mentioned that the overview, summary, and total
counts of the AC report helped them strategize and prioritize issues to fix. Total counts helped P19
– “I’m just going through and kind of looking at I’m trying to look at where are the warnings are
the highest?” – to organize how they looked through the report. By clicking on categories in the
summary tab, participants could view the total counts of issues and visualize all impacted screens
at once. This helped them discover higher level patterns of issues.
While participants in general felt that the AC report helped them prioritize and report the

issues across the apps more easily than the other modes, they gave several creative and insightful
suggestions about how to make the reports more useful and more interpretable for future developers.

Several participants (n=6) in the study had questions about particular issues and what they mean,
suggesting that the fix suggestions (such as those shown in Figure 8.B) provided in the AC report
and the SS and MS tools could be clearer, provide more detail, or “link to additional resources” (P12).
Several participants also found the report initially to be “overwhelming” (n=5) and noted that

it might discourage developers to see a big number of issues, such as P2 – “oh, now we have a, I
got a huge list of, like, you know, 500 accessibility issues. Which ones do we start with?”. These
participants also gave suggestions for how the system could better prioritize issues to make them
less overwhelming. Some participants recommended assigning severity or priority ratings to issues,
or reporting statistics that emphasize the magnitude of impact on a population.

P14:“Maybe we can actually empower people to get some, some stuff done. I mean, saying there’s a
450 dynamic type issues versus saying oh, there’s X number of 100,000 people that won’t be able to
use your your tool. This many of your bugs affect people with low vision, this many affect users of
screen readers.”
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Other participants recommended prioritizing issues based on the frequency of usage or im-
portance of the UI elements impacted by the issue. This also relates to P13’s suggestion which
highlights the value of integrating screen and UI element identification into the report which can
enable understanding the scope of issues across the app and report themes and higher level insights.

P13:“Like, if it went through every screen, it was like, okay, like, 90% of the elements didn’t support
dynamic type then probably like limited dynamic type for support altogether. Yeah. So, it’d be nice
to just, you know, pull up these into one area for dynamic type.”
While our current system does not provide severity ratings or any of these suggested prioritization

modes, the technology our system introduces (e.g., screen similarity and grouping, UI element
matching) can potentially enable reporting these higher level themes automatically, and we plan to
integrate some of these ideas into future versions of our system.

6.3.4 RQ4: How can accessibility reports fit into participants’ workflows? One common theme
coming up across the interview questions was participants hypothesizing about workflows where
MS and AC modes might be useful. The AC report was seen as particularly useful for QA and
reporting use cases (n=9), such as tracking the accessibility of the app over time or computing stats
and trends.
P16:“Like, is there a way to do a checklist? So once you make fixes, can you show, like, how it’s
been fixed over time or changing over time, or something like that?”
Related to this, participants (n=4) wanted to integrate AC into their continuous integration

workflows, which would enable them to run the reports on a regular basis, across multiple devices
and settings (e.g., dark and light mode), or for testing accessibility across multiple languages.
Supporting triaging and marking issues as ignored over time was also noted as an important

feature in long term use, as participants mentioned they might be likely to file bugs or find issues
in the report that they would mark as “won’t fix” or “minor issues”. These issues should then be
filtered out of future reports automatically.
Aside from it’s usefulness in QA and continuous integration, several participants (n=7, mostly

software engineers) desired for the tool to be in Xcode where they typically develop their apps.
As opposed to dynamic accessibility scanning which runs on a built app like our system, some
participants desired for report generation while building the app or on specific screens when
possible, similar to the functionality of existing accessibility linters [28] that statically analyze code
for accessibility issues.
While it is possible to detect some accessibility issues through static analysis, some classes of

issues need to be detected on a running app (e.g., contrast issues, layout or dynamic type resizing),
and so systems should support how to best combine the benefits gained from dynamic audits at a
higher level with the direct benefits of live code editing.

6.4 Screen Reader User Feedback
One participant in our study is a screen reader user who is legally blind. This participants role in
the company is accessibility evangelist, and they self-rated their expertise in accessibility testing
as Expert (5). The participant first encountered difficulties in setting up their external keyboard
they rely on for screen navigation which cost a few minutes of time for the study session. It also
took them longer to navigate the interfaces using VoiceOver on the Mac. Thus they were only
able to complete two tasks during the 45-minute session, so we report the results separately. Their
feedback reveals some benefits our system gave this participant over other scanning tools and areas
of future improvement. First, a key benefit this participant noted was that for very inaccessible
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apps, our system would let them scan more screens compared to manual scanning tools that require
use of the VoiceOver screen reader to navigate the app to each screen for scanning. Unexposed
elements in very inaccessible apps might cause them to miss scanning key areas of the apps they
would be unable to navigate.

However, as our system does not yet provide automatic alt-text to describe each screen at a
high level, the participant struggled to establish context to navigate the report to determine which
issues belonged to which screens in the app, which would be necessary to include when filing a
bug report. In the future, we could integrate more recent UI understanding technologies that add
screen descriptions or structure to generate better alt text [70, 73].

7 EXPERIENCE REPORTS
In our user study, participants audited apps they did not own themselves. Thus, we also gathered
experience reports from five app developers (5M, between ages of 22 and 45) within our organization
to understand how they might leverage our manual scanning mode (MS in our user study) and app
crawler generated reports (AC). We generated AC reports to help them evaluate their own apps’
accessibility and gave them our MS tool to use on their own apps (see the multi-screen version
inspector in Figure 8.E). The apps they worked on were internal apps used within our organization
for bug filing, device and build management, and sample apps from documentation. Each developer
we interviewed did have QA in place for accessibility testing, although the majority of them (four)
lacked automation tests and primarily relied on manual testing.

Issues Found Each developer looked through the AC report and noted any issues they found for
which they might file a bug. The mean number of screens in these reports among the five apps was
30.4. Since the developers were already highly aware of accessibility, most of their apps did not
have pervasive accessibility issues. However, each located screens in their app lacking Dynamic
Type support, and at least one UI element with an incorrect or missing accessibility label. The
developers typically manually verified these issues themselves outside of our tool, which may be
due to lack of trust in prior tools which provided false positives. However, a common thread of
feedback on both MS and AC tools was that the reports contained issues (e.g., low contrast, target
size) flagged on system controls or system provided dialogs or screens they had no control over. A
challenge for future versions of our system is to filter these out or report them separately.

Workflows Three developers noted some issues in the report they had decided to not fix, or had
alternative solutions for after discussing with accessibility QA. They would ignore these issues if
this tool was integrated into their workflows. All developers expressed excitement about the AC
reports, requested access to it, and envisioned using it in their workflows. Developers thought that
MS was better than prior versions of this tool (single screen mode), but would prefer to use the AC
report if available for CI or through a command line tool.
Coverage Three developers noted that the AC report contained all the key screens they were

able to think of while two found that it missed capturing some key screens and areas of their
apps. Using the MS tool, those developers scanned those screens themselves but did not find any
additional issues they would file in those two cases. In future versions of our system, we intend to
improve our app crawlers to obtain more complete coverage.

8 DISCUSSION
Overall, our system received positive feedback from both our internal stakeholders and participants
in our studies, indicating that accessibility reports generated by our system helped them summarize
and prioritize issues. In this section, we summarize the key results and implications, discuss
limitations, and point to ideas for future work that can study the use of report generation tools
within the broader context of accessibility testing workflows.
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Addressing the Limitations of Current Accessibility Scanning Tools First, one key contri-
bution of our work is a better understanding of the limitations and inefficiencies in accessibility
scanning tools. We re-framed these as design goals we instantiated in our second contribution –
our system that uses state-of-the-art UI understanding models and heuristics to provide automation
and summarization of issues to address these limitations.
Lastly, we evaluated our system with a large group of 19 app developers and QA testers and a

smaller group of developers who provided experience reports. The findings were twofold - first,
the participants were able to more quickly find and prioritize accessibility issues using our system
versus a baseline single-screen auditing tool. This indicates that our report generation system and
features, including our multi-screen (MS) and app crawler (AC) modes, can alleviate the effort
required for single screen scanning tools while providing a better overview and summarization.
Second, the findings reveal new insights about how to make such reports more effective in future
systems.

Prior works reporting accessibility issues using app crawlers [18, 58, 59] have not studied users’
interactions with their output in depth, so our study results contribute to a gap in the literature on
how developers and QA testers can consume such reports. Currently, there are still large gaps in
accessibility across app ecosystems [4, 56, 64, 74]. A key goal of our work is to reduce the scale of
these issues over time by providing better tools for developers that can highlight these issues and
motivate developers to fix them.
Reducing Effort and Enabling Finding Patterns Participants in our user study used our

app crawler, i.e. AC, to help them discover and find the most common accessibility issues quickly,
enabling them to audit an order of magnitude screens in the same amount of time as the modes we
compared this to (i.e., MS and SS which require manually navigating through the app). Participants
found the manual modes to be a bottleneck and time consuming for quick auditing efforts. Aside
from saving developers time and effort, our system, including both MS and AC modes, can enable
developers to find patterns in the accessibility audits when similar issues appear across multiple
screens. The MS mode also adds a history of audits and counts which can enable users to find
patterns in the data while also enabling them to to control which screens they audit as opposed
to AC which reports screens through random exploration through the app. Future work should
explore how to best support combining the benefits of random exploration while providing some
level of control over which screens and user scenarios are included in the audit reports. A recent
body of work exploits large language models [50] to interpret and automate tasks in UIs without
any pre-training or fine-tuning [22, 62, 69]. This work could potentially be combined with our
system to generate more targeted accessibility reports.
Supporting Prioritization through an Overview Participants were also significantly more

satisfied with the audit lists they created using AC than the lists they created using the other modes,
indicating that AC can help them quickly create satisfactory accessibility audit summaries they can
share with others. Participants also rated the generated reports from AC to be clean and accurate.
While the analysis of the contents of the lists did not reveal any statistically significant differences,
the summary lists created using AC covered a wider scope of more important issues across the
apps. The participants also noted that AC could help them find common issues in apps quickly
to better prioritize what to fix. Prior work notes the benefits of accessibility auditing tools both
to help developers in understanding how to improve their app’s accessibility and as a resource
for learning about accessibility [34]. However, users of these tools can become overwhelmed and
demotivated when looking at the results which are not typically grouped or summarized effectively.
Our results imply that systems like ours can better help developers and QA testers quickly narrow
in on key accessibility issues to fix, which can potentially make these results more motivating and
less overwhelming to fix.
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Another major outcome of our study was in revealing participants insights and creative sug-
gestions on how reports generated by our system can better support prioritization and discovery,
such as providing contextualized fix suggestions, severity ratings, impact on users with specific
disabilities, or reporting the scope of issues across the app. Some participants did find the reports
“overwhelming” for the apps they audited, which did have a large number of accessibility issues.
It will be important for future systems to incorporate these suggestions to make the results less
overwhelming.

Integration into Workflows Participants in both our user study and in our experience reports
(Section 7) desired to incorporate our system’s reports into their workflows in various ways to
enable new capabilities of tracking accessibility over time, computing trends, or scaling up testing
across various settings (e.g., display, language). These are capabilities that most of them do not
currently have in their accessibility testing toolkit, which our system can add. These findings
suggest that app developers and QA testers, who are all involved in accessibility testing, can benefit
from improved accessibility report generation tools to report and summarize basic issues. In turn,
they may be more motivated to use these tools at all and can free up time in testing to focus on
more complex accessibility testing that can be difficult to automate. Another way we could motivate
participants to use these tools is by bringing them closer to their development environments, as
indicated by our user study. Future work could explore linking these reports back to provided code
suggestions for fixing the issues.
Supporting Highly Inaccessible Apps Another limitation of these prior systems is that they

rely on accessible view hierarchies to drive their automation, which for inaccessible apps are often
unavailable or incomplete [40, 74]. A major motivation for our work is to build a system that can
report accessibility issues found in all kinds of apps, most importantly highly inaccessible apps.
Hence, our system operates on the visible UI by using a machine learning UI detection model
to explore the app which can enable it to explore and capture data from a larger scope of an
inaccessible app. Future work should compare or even combine these two approaches to more
effectively cover both accessible and inaccessible apps.

8.1 Study Limitations
In our formative study, we primarily focused on eliciting the design goals based on the use of
automated tools such as accessibility scanners. These tools are only one part of the whole workflow
of accessibility testing, and future studies should examine other aspects of how these tools fit into
larger testing workflows. Additionally, accessibility scanners, such as Accessibility Inspector [36]
used by our system, do not cover every accessibility issue.

Our system can incorporate more automated checks [3, 44, 49] to expand coverage. Our system
is also agnostic to the underlying accessibility scanner; thus it could also be easily extended to
incorporate the results from multiple scanners, if available, to provide more coverage of key issues.
Recent work on web platforms has provided frameworks for interoperability of web accessibility
requirements, enabling accessibility reporting tools to incorporate multiple sets of accessibility
guidelines [7]. Future work in a mobile context should study if a similar framework can be adopted.
However, even for the portion of the app that our system crawls, it still does not generate a

complete report of accessibility issues and should not be interpreted as such. As automated tools are
unlikely to ever find all accessibility issues [1, 2, 48, 52, 65], it will always be imperative to conduct
other types of accessibility testing, including manual testing by specialists [1, 9] and people with
disabilities [46]. However, as our study participants and internal stakeholders note, this tool can be
a valuable complement to their current testing and might motivate them to use these tools more
regularly. We also recognize that these tools should make it transparent to developers the types of
accessibility issues that they can and cannot detect [45], which is a subject for future work.
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Our studies primarily evaluate our report generation technologies, and the overall idea and
features of the system over the design of the report itself and how it conveys information. How-
ever, our study revealed insights around how future systems might surface accessibility issues in
reports. Some of these insights can directly leverage our introduced models to report the scope
of issues across an app, for example. We may also be able to take inspiration from work on large
scale reporting for web interfaces on how to more effectively convey the reported accessibility
information to relevant audiences [53, 61].

Our user study sessions comparing AC to MS and SS scanning modes were short and thus may
not reflect how participants would use them for thorough accessibility audits or comparisons over
time. We have deployed this system to a small pilot group in our organization and intend to study
its impact over time to better address this limitation.
Related, we motivated and evaluated our system against app auditing in the iOS platform. The

participants we interviewed for our study were also from a single company; thus their experiences
may be skewed towards the iOS platform and the related accessibility scanning tools. However,
some literature already points to issues more generally with accessibility scanning tools, which
extends beyond the iOS platform [34].

Our participants were also relatively familiar with app accessibility. Future work should evaluate
and explore how to best present and prioritize summarized issues to make them easily understand-
able to developers not as familiar with accessibility as our study participants. This work could in
turn enable future studies on whether providing automated reports can increase awareness and
understanding of accessibility among app developers [34].
In our user studies, participants audited apps they did not own themselves potentially limiting

our evaluation findings to QA testing contexts where testers often audit apps for which they are
not responsible. However, we also hope our system can ultimately increase developers’ awareness
of the accessibility of their own apps. To begin to explore this, we collected experience reports from
developers in our organization which indicated our tools could help them find real, high impact
accessibility issues with their apps. They also revealed future improvements to our system such as
better filtering of issues from system controls and improving coverage of key screens in our AC
reports. They also indicated an interest in using our tools on an ongoing basis with their own apps.
However, the question of whether such tools can increase their awareness of accessibility of their
apps should be explored further in future studies.

8.2 Technical Limitations
While our screen grouping model achieves high accuracy, our data still contains many annotation
errors whichwewould like to resolve to improve themodel further.We also plan to collect additional
crawl data for screen variations the model has difficulty predicting (e.g., scrolled screens, keyboard
open / closed). So far, we have trained and evaluated this model only on iOS screens. Future work
can examine whether this model can generalize across platforms on datasets like Rico [17]. While
improving these models, we will continue to evaluate our system with users to study the impact of
accuracy improvements. For future work, we will apply these models in other contexts beyond
accessibility report generation, such as UI testing, design, and record & replay systems.
Additionally, we plan to further explore methods of accessibility report data collection. Our

prototype supports both manual capture and random crawling. While we used the random crawler
to produce reports for our study, we have not evaluated crawler coverage. We plan to further
develop and leverage improved app crawling in future work, based on feedback from our user
studies indicating that users would like more control over reporting specific application flows that
are relevant to them.
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8.3 Future Work
Future work should examine the use of automated reports along with other evaluation techniques
(e.g., manual testing) and whether deploying such reports increases time for manual testing beyond
basic features. An interesting question to study might be whether accessibility reports can drive
down the number of basic accessibility issues over time, in the vein of studies from Fok et al. [23]
and Ross et al. [56]. Other work could also study whether automated accessibility reports can enable
developers and QA testers to more easily monitor apps for accessibility regressions over time, a
potential indicated by our user study. While large scale evaluation and tracking of issues over time
has not been widely studied for mobile platforms, systems like ours can also take inspiration from
work on large scale accessibility evaluation on the web [35, 53]. This area of work has developed
automated metrics for tracking issues [47], and presents design requirements for interfaces for
large-scale accessibility evaluation and reporting [53]. The technologies we introduce in this work
can provide a foundation for building accessibility evaluation platforms to track and report on
accessibility issues over time for mobile apps.
The two key technical contributions of this work, screen grouping and UI element matching,

achieved high accuracy. We plan to continue improving these components of our system in future
work while also addressing the improvements noted by our stakeholders and study participants.
We also plan to explore additional ways machine learning can be used to detect and report issues
(e.g., grouping, navigation order) to make the report more informative. However, while surfacing
more issues can be helpful, caution must be taken to prevent developers and QA testers from
relying only on the results especially in cases where the system makes false negative predictions or
fails to report an issue [15]. Ours and similar systems can provide model confidence scores and
explanations to increase transparency and explainability in accordance with the guidelines from
Amershi et al. [5].

9 CONCLUSION
In this paper, we presented a system to generate accessibility reports for mobile apps from a variety
of input sources. The models and algorithms in our system achieved high accuracy on large datasets.
Our screen grouping model and UI element matching methods may also have implications in a
number of UI testing and interactive applications beyond report generation.
User studies of our system demonstrate this approach is promising and can provide value as a

tool in the accessibility testing process for mobile apps. Future studies should explore how systems
like ours fit into the larger workflow of accessibility testing which includes manual assessments
and evaluations by end users with disabilities. Going forward, we hope systems like ours lead to
improvements in the number of accessibility issues being found in large scale analyses [56, 74].
Going forward, we will continue improving the accuracy of our methods and usability of our
reports to enable developers and QA testers to quickly comprehend key areas where their app’s
accessibility should be improved.
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