
Human Performance Regression Testing
Amanda Swearngin, Myra B. Cohen

Dept. of Computer Science & Eng.
University of Nebraska-Lincoln, USA

Lincoln, NE 68588-0115
{aswearn,myra}@cse.unl.edu

Bonnie E. John, Rachel K. E. Bellamy
IBM T. J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY 10598, USA

{bejohn,rachel}@us.ibm.com

Abstract—As software systems evolve, new interface features
such as keyboard shortcuts and toolbars are introduced. While
it is common to regression test the new features for functional
correctness, there has been less focus on systematic regression
testing for usability, due to the effort and time involved in human
studies. Cognitive modeling tools such as CogTool provide some
help by computing predictions of user performance, but they still
require manual effort to describe the user interface and tasks,
limiting regression testing efforts. In recent work, we developed
CogTool-Helper to reduce the effort required to generate human
performance models of existing systems. We build on this work
by providing task specific test case generation and present our
vision for human performance regression testing (HPRT) that
generates large numbers of test cases and evaluates a range of
human performance predictions for the same task. We examine
the feasibility of HPRT on four tasks in LibreOffice, find several
regressions, and then discuss how a project team could use this
information. We also illustrate that we can increase efficiency
with sampling by leveraging an inference algorithm. Samples
that take approximately 50% of the runtime lose at most 10%
of the performance predictions.

I. INTRODUCTION

Regression testing (testing after modifications to detect
faults that have been introduced by changes, e.g., [1], [2]),
has become best practice in the development of commercial
software. A large body of research, automated processes,
and tools have been created to solve problems related to
regression testing for functional correctness. Regression test-
ing of quality attributes, like system response time, has also
received attention (e.g., [3], [4]), and there is research into
incorporating human expertise to increase test efficiency [5].
But regression testing of one important quality, usability,
has remained largely untreated in the software engineering
(SE) literature. Regression testing of usability is an important
consideration in software development because as systems
grow in functionality, they often also grow in complexity, with
more features added to user interfaces, which can hurt end-
user efficiency and discoverability (i.e., the ability for a new
user to discover how to accomplish a task through exploring
the interface). For instance, adding toolbars to an interface
should, in theory, increase user efficiency (a factor of usability)
because only one mouse action is necessary to use an always-
visible toolbar as opposed to two or more mouse actions
to pull down a menu and select a command. However, the
positioning of the toolbar may move other user interface (UI)
elements further away from where skilled users need them for

common tasks, necessitating longer mouse movements and, in
fact, decrease efficiency. In addition, many toolbars with small
icons may add screen clutter and may decrease a new user’s
ability to discover how to accomplish a task over a simpler
UI design.

Usability testing has traditionally been empirical, bringing
end-users in to a testing facility, asking them to perform tasks
on the system (or prototype), and measuring such things as the
time taken to perform the task, the percentage of end-users
who can complete the task in a fixed amount of time, and
the number and type of errors made by the end-users. Both
collecting and analyzing the human data is time consuming
and expensive. Since regression testing is typically resource
constrained [1], [2], the manual effort required to perform
usability testing means that regression testing for usability is
often intractable.

As a consequence, research in the field of human-computer
interaction (HCI) has produced methods and tools for pre-
dictive human performance modeling using “simulated end-
users” [6]–[9]. Research into predictive human performance
modeling has a 40-year history in HCI that has produced
theories of human behavior, operationalized in computational
models, that can reliably and quantitatively predict some
aspects of usability, e.g., the time a skilled end-user would take
to complete a task [7], [8], the time it would take an end-user
to learn methods to accomplish tasks [9], and, more recently,
the behavior novice end-users would display when attempting
to accomplish tasks on new interfaces, including the errors
they would make [6], [8], [10]. UI designers find such models
valuable in their development process, from evaluating early
UI design ideas before implementation to evaluating proposed
systems during procurement [9], [11].

Although not as time-intensive as empirical testing with
human participants, modeling still involves substantial human
effort because the UI designer must construct the human
performance model and enumerate the different ways that a
task can be accomplished on the interface. Thus, the number of
tasks, and alternative methods for accomplishing those tasks,
that can be analyzed are still limited by the time and resources
available for usability evaluation. Typically, a UI designer,
even one skilled in using a human performance modeling tool,
will only evaluate a handful of tasks, with only one or two
methods per task (e.g., using the mouse and menus to perform
the task, vs. using keyboard shortcuts).

978-1-4673-3076-3/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA152

!
!
Legend!
!
!
!
!

Select user task to
be analyzed

Generate all test

cases for task

Generate human
model input

GUITAR

Define task rules

CogTool-Helper

Construct human
model and make

predictions

Extract task
GUI events

CogTool

1. Task selection 2. Task specific test case
generation

GUITAR

3. Human model creation and
performance calculations 4. Results

Time

!!!!!!!!!!!!!!!!!!!!!!!!!

regression

x

v1!
 v2!

v3!

Interface versions

Automated
 process

Tool Name Human
 input Stage

Fig. 1. Overview of Human Performance Regression Testing (HPRT)

In recent work, we proposed merging research from the SE
community on Graphical User Interface (GUI) testing with
cognitive modeling tools from the HCI community to automate
the creation of the human performance models. We built a tool,
CogTool-Helper [12], that automates some of the process of
defining tasks and building human performance models for
running systems. However, the UI designer still needs to
specify each method an end-user would use to do each task,
e.g., using the menus vs. using keyboard shortcuts, a level of
manual effort that still limits the number of tasks and methods
that can be analyzed in any iteration of the UI design.

We now propose a tighter integration of SE research on
regression testing with HCI research in human performance
modeling. This will enable us to perform extensive testing of
user performance, in what we term human performance re-
gression testing (HPRT), that will result in usability testing of
an implemented UI on a scale that was previously impossible.

In this paper, we detail our approach to HPRT and imple-
ment a prototype to evaluate its usefulness. We first describe a
technique to generate functional test cases that mimics a real
user. We then exercise our prototype for HPRT on four tasks
using three versions of an open source application interface,
and show that not only is this approach feasible, but it provides
some interesting and unexpected results.

The contributions of this work are:
1) A novel approach for human performance regression

testing (HPRT) that:
a) Performs test case generation of realistic user tasks.
b) Results in visualizations of user performance across a

range of methods to accomplish the same task.
2) A feasibility study showing that HPRT provides useful

information, and that an inference algorithm allows us
to increase the efficiency of HPRT without much loss of
effectiveness.

II. OVERVIEW OF HPRT

As an illustration, Figure 1, shows an overview of HPRT
(the figure points to specific existing SE and HCI tools, which
will be explained in the next section, but the process is
more general than these specific tools). The process has four

main stages, numbered and named in black rectangles. In this
example, a UI designer examines an existing interface (V1)
and sees that the only way a user can invoke a command is
through menus. Assume the UI designer’s goal is to increase
efficiency for skilled users (one common usability metric).
To meet this goal, the designer adds keyboard shortcuts to
the interface (V2), and in a subsequent version, (V3), adds
toolbars. At each interface feature addition, the UI designer
should validate that the new features have indeed improved
efficiency, or at least, have not decreased efficiency of human
performance (i.e. have not caused a regression).

In Stage 1, the UI designer chooses tasks to evaluate; we’ll
use select a block of text and make it bold as an example
task. (In practice many, and more complicated, tasks would
be evaluated). In (V1), there is one way for an end-user to do
this task, i.e., using menus. But as keyboard shortcuts (V2)
and toolbars (V3) are added, the user may use pure (e.g., only
keyboard shortcuts) or mixed methods (e.g. using both menu
and toolbar) to achieve this task. The tasks to be evaluated and
the running versions of the system are the inputs for HPRT.

In Stage 2 of HPRT, task specific test cases are generated.
The UI designer uses a GUI functional testing tool, e.g., GUI-
TAR tool [13] to extract a model of the subset of events that can
be used to achieve the task from the running interface. This
model represents all possible (and partial) ways to perform
this task, many of which make no sense from the perspective
of evaluating the efficiency of skilled users. For example, this
model can include a path that opens a dialog box and closes
it immediately without making any changes to it, unnecessary
steps a skilled user would not perform. Inspired by Memon et
al.’s work restricting test case generation by writing rules [14],
HPRT uses rules provided by the UI designer to constrain its
test case generation to those that make sense for evaluating
usability, i.e., humanly-reasonable methods that a skilled user
might follow to accomplish a task. For instance, since both
select and bold must be included in our example task for it to
be complete, each event must occur once, and the UI designer
writes a rule to enforce that requirement. Furthermore, an
experienced end-user would make the text bold only once,
i.e., with either the menu or the keyboard shortcut, but not

153

both, so the UI designer writes a rule to make these events
mutually exclusive. Finally, each of these humanly-reasonable
methods is turned into a test case1 using a customized version
of the GUITAR [13] test case generator.

In the third stage, the test cases are imported into CogTool-
Helper [12], which recreates the UI design and the test cases
in such a way that it can be fed into a human performance
modeling tool such as CogTool [15]. CogTool runs a simulated
user to produce an estimate of the time it would take an
experienced end-user to perform that task using each of the
test cases on the applicable versions of the UI. The results
from each of the versions of the system can then be presented
as a histogram (shown as stage 4 to the right in Figure 1),
so that the UI designer has an understanding of the range of
performance times that are possible given the interface and
task. In this example, we see a regression, where V3 (in white
in the histogram) has an outlier time-wise, caused by adding
toolbars. This result may have arisen from a test case that
switches between using the toolbar and using either menus or
keyboard shortcuts, requiring a lot of extra hand movement by
the user – something the UI designer did not consider. Had the
designer examined only one or two test cases for each version
of the UI, as is the state-of-the-practice, this regression might
have been missed, because most of the other data points lie
below the time taken in the previous versions. Given the results
of HPRT, the UI designer can now drill down into the test case
that causes this regression, determine if this is likely to be a
problem for real users, and if so, can fix the UI or train users
to avoid the aberrant procedure.

III. BACKGROUND AND RELATED WORK

The process of HPRT emerges from prior work in both SE
and HCI. In this section we present the prior work in these
fields on which we base HPRT.

A. Automated GUI Testing in SE

Techniques and tools for automatic regression testing of
the graphical user interface (GUI) for functional correctness
are abundant in the SE literature, (e.g., [14], [16], [17]).
Automated regression testing in GUIs requires (1) a model
of the interface, (2) a technique to generate test cases and
(3) a method for replaying the test cases on the interface.
Approaches include representing GUIs as finite state machines
[18], as graph models [14], [16], [17], [19], or through visual
elements such as buttons and widgets [20].

Our proposal for HPRT is most similar to the work of
Memon et al. [16], where GUI interfaces are represented as an
event flow graph (EFG), which describes the edges between
events (i.e. which events can follow others) and their type
(e.g. structural or system interaction). An event is the result
of an event-handler in the application responding to a user
or program interaction with the interface, e.g., by clicking a
menu or button, or typing a keyboard shortcut. An EFG can be

1Regression testing calls each path from a start state to an end state a test
case, while human performance modeling calls it a method. These terms are
equivalent and will be used interchangeably.

extracted from a GUI using a tool called a ripper [17], which
performs a single execution of the program, using a depth first
traversal of the interface, opening all menus, windows and
reachable widgets and buttons. As it performs these events, it
extracts the state of the interface (each of the widgets, their
types and edges, properties and values, etc.).

Test cases can be generated from the EFG by enumerating
sequences of nodes along paths in the graph. Existing test
case generation algorithms use criteria such as selecting all
single edge paths (all length 2 test cases), generating all paths
of a particular length, or randomly selecting paths in the
EFG. Once generated, test cases can then be replayed on the
GUI. Such test cases can provide feedback on the functional
correctness and completeness of GUIs, but give no insight into
the usability of the GUI.

As mentioned in the overview, typically not all test cases
generated for functional testing make sense from a usability
perspective; it is quite possible that a test case generated
from an EFG would click the bold toolbar button multiple
times, or click the bold toolbar button before text has been
selected. Memon et. al. [14] used hierarchical AI planning
and constraint rules to generate more ”meaningful” GUI test
cases. Their key conjecture was that ”the test designer is likely
to have a good idea of the possible goals of a GUI user and
it is simpler and more effective to specify these goals than
to specify sequences of events that the user might employ to
achieve them.” Our approach is similar, except that Memon
et. al. included only system interaction events (e.g., that a
command to make text bold was invoked, but not how it
was invoked), whereas our work explicitly includes structural
alternatives on the interface that can impact user performance
(e.g., whether an event is invoked by clicking the mouse or
with a keyboard shortcut). In addition, we don’t use an AI
planner for generation, but use a functional test generator and
then drop test cases that violate the rules.

We use Memon’s GUI Testing Framework, GUITAR, [13], a
set of open source tools available for a variety of user interface
platforms, as the basis for our prototype for HPRT. It includes
a ripper, a replayer and functional test case generator. We
modified the ripper to extract sub-graphs of events, added the
ability to represent keyboard shortcuts, and modified the test
case generator to check constraint rules (see Section IV).

B. Predictive Human Performance Modeling

Research into predictive human performance modeling has
a 30-year history in HCI, but new tools have made it pos-
sible for UI practitioners to create valid human performance
models without having PhD-level knowledge of cognitive and
perceptual psychology. With one such tool, CogTool [15], a
UI designer can create a storyboard of an interface without
programming and demonstrate methods for accomplishing
tasks on that storyboard. (A task is a goal that will be achieved
on the interface such as creating a table, or inserting the
date. Methods are concrete steps in the UI that accomplish
the task.) CogTool captures each demonstration and creates a
computational cognitive model of a skilled end-user based on

154

the Keystroke-Level Model (KLM) [7]. CogTool then runs this
model producing a quantitative prediction of mean execution
time by a skilled user. In practice, UI designers have used
these predictions in many aspects of the software development
process, from competitive analysis to evaluating proposed
design ideas, to assessing contract compliance [11].

Although CogTool is an order-of-magnitude faster than
previous tools for creating models [15], CogTool still requires
UI designers to build a storyboard of the existing or proposed
UI against which the models can be run, which, depending
on how much of the UI is being tested, can take the UI
designer hours or days. (A storyboard is a common tool of
UI designers, comprised of a series of pictures of what end-
users would see as they work with the UI and the user actions,
e.g., click this button, type that text, that transition from one
picture to another.) When evaluating efficiency, the storyboard
need only represent the correct paths through the UI for each
task and the UI designer demonstrates those paths on the
storyboard. CogTool produces the human performance models
from the storyboard and demonstrations, and runs the models
to extract quantitative predictions of skilled task execution
time. Although we are using the efficiency usability metric to
illustrate HPRT in this paper, CogTool can also predict new-
user exploration behavior (including errors) [10]. For this type
of evaluation, the UI designer must specify the end-users’ task
goal and a full storyboard with all the widgets in the UI for
the human performance model to explore. Imagine re-creating
the entire interface of OpenOffice manually from screenshots,
hotspots, and links; this is too much manual effort to allow
frequent testing on rapidly changing interfaces.

C. Merging the Two: CogTool-Helper

In [12] we presented CogTool-Helper, a tool that links Cog-
Tool [15] and GUITAR [13] to reduce the human effort needed
to produce CogTool predictions. CogTool-Helper generates
storyboards and task methods from existing applications and
delivers them to CogTool. After some initial setup in which
the UI designer points CogTool-Helper to the application that
he/she will evaluate, the UI designer creates one or more tasks
either by demonstrating one or more methods for each task on
the application (i.e., capture) or by directly encoding methods
(i.e., test cases) in an XML format.

CogTool-Helper then opens the application, extracts needed
information from the menus (which is analogous to a partial
ripping of the interface), replays the test cases (taking screen-
shots, and recording the corresponding UI state as the set of
visible widgets and their properties, in the process). It then
encodes information about the UI widgets (e.g., type, size and
position). The result is a translation into a CogTool project
XML that contains a UI design storyboard, one or more tasks,
and one or more test cases for each task. The design storyboard
is a graph with nodes made up of the unique UI states
(shown as screenshots taken while replaying the test cases),
and edges that represent the user actions that produced the next
screenshot. From this graph, CogTool-Helper infers methods
not explicitly provided by the UI designer by traversing the

graph to identify alternative paths between the start state
and end state of the task. In [12], we saw as high as a
75% increase in the number of methods over those manually
specified, due to the inference algorithm. We evaluate the
impact of this capability on performance of HPRT, as our
second research question in Section VI.

The output of CogTool-Helper is an XML project that can
be imported into and analyzed in CogTool. Once imported,
CogTool produces the valid human performance model, runs
it, and produces quantitative predictions of skilled end-user
performance time for each method within each task. The UI
designer can then use CogTool to explore differences between
GUIs (e.g., competitors or previous versions of a system) or
modify the UI designs and see if the modifications can make
a new version more efficient.

Although CogTool-Helper greatly reduces the human effort
required to build CogTool models, it still requires human
effort to create methods for each task through capture or
writing XML. Its method inference algorithm discovers some
alternative methods, but it cannot infer all methods because it
depends on the methods the UI designer defined. For example,
if the task was to make some selected text bold and centered,
and the UI designer demonstrated only (1) making text bold
then centered using the menus and (2) bold then centered using
the toolbar, the inference algorithm could discover making the
text bold using the menus then centered using the toolbar, but
could never discover the alternative method of making the text
centered then bold. The HPRT process proposed in this paper
goes beyond CogTool-Helper in that it generates all humanly-
reasonable methods.

IV. DETAILS OF HPRT: TEST GENERATION

In Section II, Figure 1, we presented an overview of our
vision for HPRT. Stage 1 and Stage 4 represent inputs (tasks
and versions of a UI) and outputs (histograms of performance
predictions) of HPRT. The tools used in Stage 3 already exist
and were just described in Section III as our prior work on
CogTool and CogTool-Helper [12]. Thus, the key technical
challenge that we face to realize HPRT is Stage 2, Task Specific
Test Case Generation. Figure 1 shows that Stage 2 includes
extracting task GUI events, defining task rules, and generating
all test cases for the task, each of which will be detailed below.

To make our example task (from Section II) concrete we
add some text; the task is to type in the text Chapter One,
select the text, and make it bold. The resulting state of this task
is shown in the top of Figure 2 as executed in LibreOffice [21]
an office application. We have limited this task for illustration
purposes, restricting our analysis so that the user types in
the text first rather than starting the task by setting the font
to bold, but, in practice, tasks would not be as restrictive.
For this example, we assume V3 of the UI that has menus,
keyboard shortcuts, and toolbars, any of which, in different
combinations, can be used to perform this task.

A. Extract Task GUI Events
Since most EFGs for real applications are very large,

(OpenOffice Writer 3.3.0 has 605 nodes and 79,107 edges

155

Sub-Goal Approach Partial Event Tuple: <Name, Type, Action>

Type Text: Chapter One 1. <…, PARAGRAPH, Typing>

Select All of the Text A. Toolbar 2. <Select All, PUSH_BUTTON, Click>

B. Menu 3. <Edit, MENU, Click>
4. <Select All, MENU_ITEM, Click>

C. Keyboard 5. <Select All, MENU_ITEM, Keyboard Shortcut>

Make Text Bold

A. Toolbar 6. <Bold, TOGGLE_BUTTON, Click>

B. Menu 7. <Format, MENU, Click >
8. <Character…, MENU_ITEM, Click>
9. <Bold, LIST_ITEM Select_From_List>
10. <Okay, PUSH_BUTTON, Click>

Result of performing task on
interface

Fig. 2. Example Task on Word Processor

Fig. 3. Resulting Event Flow Graph

[13]), we created a filter that works with the ripper to reduce
the EFG to a sub-graph containing only events related to our
task. The input to the filter is a list of event-tuples, one for
each event related to our task, of the form: <Title (T),
Class (C), Window (W), Action (A), Parent (P),
Parameter (R)>. Title is the textual label of the widget
in the code, i.e., what an end-user would see displayed. When
the widget does not have a textual label, such as a button that
only displays an icon, but has a tooltip, then the tooltip text is
used as the Title. Class describes the type of widget, such
as a PUSH BUTTON, TOGGLE BUTTON, etc. Window is
the textual label of the window containing this event-tuple.

Action is more complex, defining which event handler
will be used for this event. It’s values include Click (currently
we only support left click), Typing (typing with the keyboard),
Set Value, Select from List, Keyboard Shortcut and Keyboard
Access. We support several actions when Typing text, insert,
replace, select, unselect and cursor, some of which have
additional parameters, such as the text to insert or replace.
Keyboard Access is used when the keystrokes walk through
a hierarchical menu instead of directly accessing a command
as a Keyboard Shortcut does (e.g., Alt-oh opens the Format
menu and selects the Character item).
Parent is optional. It is the title of the container for

this event-tuple, which provides a way of disambiguating
information when more than one widget in a window matches
the same Title text, or when a widget does not have any
Title text. Parameter, also optional, is only used for
widgets with the action Typing.

The event-tuples for our task are shown in the table at the
bottom of Figure 2. We have reduced the event-tuple to show
only <T , C, A> as they are enough to make each event unique
in our example. The first column in the table is a task sub-goal.
The second column lists the approaches that would lead to
the events (e.g. using the menu or keyboard). The last column
shows the event-tuples associated with each approach. In the
top row, Event-Tuple 1, the main paragraph widget for the
document has no title. This is a situation where we would
use the optional Parent parameter, which would be, in this
case, the text for the main document window, “Untitled 1 -
LibreOffice Writer”.

The EFG representing our example task is shown in Figure
3. It has 10 events (nodes) corresponding to the event-tuples
in Figure 2, and 52 node relationships (edges). The shading in
Figure 3 shows the type of event for each node, encoded by
GUITAR as a property of the node [17]. A System Interaction
event causes a functional change to the system (e.g., selecting
all the text). The rest of the events cause structural changes.
An Expand event opens a menu or a list to allow the user to
select from a set of actions. A Restricted Focus event opens a
modal window; the user must interact with that window until
it is closed. Finally, a Terminal event closes a window. We
will need to use these types in the next step.

B. Define Task Rules

To restrict the generated test cases to those reasonable for
human performance testing, we constrain the generator with
two kinds of rules. The first is a global rule, enforced for all
tasks. Global rules stem from typical user behavior, apply to
most tasks, and are embedded in our test generation tool; the
user does not write them. The second kind of rule is a task
specific rule. These arise from the logic of the specific task
and interface and therefore need to be written anew for each
task and/or interface to be analyzed. Task specific rules can
override global rules if the task and UI so require.

1) Global Rules: To generate humanly-reasonable test
cases for our example task, we have defined four global rules.
The first ensures that the task is logically complete and the

156

rest apply to the efficiency usability metric assumed to be the
goal of the UI design evolution.

1) End in Main Window. The test case must end with a
system interaction event in the main window, or with
a terminal event resulting in only the main window
being opened. This prevents ending in a dialog box with
changes that haven’t been applied, with an open menu,
etc. No expand event, restricted focus event, or an event
between a restricted focus event and a terminal event can
be the last event in a test case, eliminating events #3, #7,
#8, and #9 as potential last events in Figure 3.

2) Expand Followed by Child Event. An event that expands a
menu or list, must be immediately followed by an event
that is executed on a child of that menu or list. This
prevents expanding a menu or list and then performing
no actions on it. After event #3 (Edit, MENU, Click) is
performed, the only valid event that can follow in this
graph would be #4 (Select All, MENU ITEM, Click).
There is an edge on this graph leading from #3 to #7,
but this rule prevents this edge from being in a test case
in our example.

3) Window Open and Close Can’t Happen. A window can’t
be opened and immediately closed without some other
event happening in between. We can’t have event #8
immediately followed by #10, despite an existing edge.
This rule will force the test case generator to take the
path from event #8 to #9.

4) No Repeat Events. No event can appear more than once
in a test case unless it appears in a task specific rule that
overrides this general rule. This rule prevents a test case
from pressing a button over and over again. This may be
a valuable test case for functional testing to make sure
the system doesn’t crash with repeated button-pressing,
but it is not often reasonable for usability testing.

Rules 2 and 3 apply only to the efficiency usability metric;
new users will often open a menu, a list, or a window, just to
see what it reveals. Furthermore, if a specific task requires a
skilled user to check the status of information in a menu, a list,
or a window (e.g., if a menu item can be toggled on or off),
then a task-specific rule would be written to override these
general rules for those specific tasks. Rule 4 will need to be
overridden when a task requires the same event to be executed
multiple times. For example, if our task also italicized the text,
then we would would need to allow #7 (Format MENU, click)
to appear more than once since a task that performs both bold
and italic using only menus needs to expand the same menu
more than once (see the Repeat task-specific rule below).

2) Task Specific Rules: The global rules are primarily
structural, enforcing constraints that are common to many
tasks. However, individual tasks and UIs also have constraints
that restrict them based on their functional properties. We have
identified four types of constraints and created rules for each.

1) Exclusion. This is a mutual exclusion rule. It says that
exactly one of the events in an exclusion set must be
included in each test case. Examples of events that would

be in an exclusion set for our task are #2, #4, and #5.
They all achieve the same goal – selecting the text.

2) Order. This rule specifies a partial order on events. We
group events into Order Groups, i.e., sets of events that
are in the same ordering equivalence class, and then place
the groups in the required order. Only system interaction
events appear in order sets, since the other types of events
only cause structural changes. In our task, we required
typing the text to happen before all other events to make
this example simple enough to explain. Thus we place #1
(PARAGRAPH, Typing) alone in the first order group.
Since selecting the text must happen in our example
before it can be made bold, we place events #2, #4 and
#5 in the second order group and events #6, and #9 in the
last order group. If the example text also centered the
text, then we would include both center and bold within
the same partial ordering group.

3) Required. Events in the required list must appear in all
test cases. In our example the only event that is required
is event #1 (PARAGRAPH, Typing).

4) Repeat. Events in the repeat list allows us to include
specific events in a test case more than once, overriding
the global rule against repeated events. As mentioned
above, this rule would allow event #7 (Format MENU,
click) to appear more than once if the task required
several changes in format to some selected text.

C. Generating All Test Cases for the Task

Once we have the EFG and the set of rules, we supply
these as input to an existing test case generator and generate
all possible tests for this EFG that are valid with respect to
the rules. For our initial implementation we use the existing
GUITAR test case generator [13] to enumerate all possible
test cases of particular lengths (corresponding to the possible
lengths of completing our task) and add a filter to discard test
cases that do not pass the rules as they are generated. Although
simple to implement in a feasibility study, this generate-
then-filter approach is likely to be too inefficient for larger
applications. Future work will include direct test generation
algorithms that first reduce the EFG with respect to the rules,
and/or utilize constraint solvers to check satisfiability.

V. FEASIBILITY STUDY

We conducted a preliminary study to determine the feasi-
bility of our approach.2 We answer two research questions.
RQ1: Does our approach to test generation for HPRT provide

potentially useful information for a UI designer?
RQ2: Will inferred methods allow us to sample test cases

during HPRT without diminishing the value?

A. Feasibility Study Scenario

We selected three modules of LibreOffice 3.4 [21],
swriter, simpress and scalc, to illustrate the process a
product team would go through and the resulting information

2Experimental artifacts and results can be found at:
http://www.cse.unl.edu/∼myra/artifacts/HPRT-2013/

157

it would gain from HPRT. The first step is to identify tasks that
the end-user would do in the real world and create representa-
tive instances of those tasks. This information usually results
from field studies, interviews, questionnaires, or log reports
interpreted by user experience professionals. As an illustration,
we created four tasks for our study, described in Table I.

Our study considers three hypothetical versions of Libre-
Office that introduce different UI features to the end-users.
The first version (M) presents only menus to access the
functions needed for these tasks. The second (MK) adds the
ability to access these functions with keyboard shortcuts. The
third (MKT) adds toolbars for common functions (the default
appearance of LibreOffice 3.4).

B. Metrics

Quantitative predictions of skilled task performance time for
each method on each version of the system, and the resulting
distributions of those predictions, will speak to whether au-
tomatic test case generation would produce interesting results
for UI usability evaluation (RQ1).

For RQ2, the metrics are the run time required to generate
the test cases, the total number of methods resulting from
these test cases in the final CogTool project, the number of
inferred methods added by CogTool-Helper, and the human
performance predictions for all of the methods.

C. Study Method

To simulate the first two hypothetical versions of Libre-
Office, we removed the toolbars using LibreOffice 3.4’s cus-
tomization facility. We encoded the necessary widgets and
actions in GUITAR’s format described in Section IV. The
number of events listed for each task and version of the system
are shown in Table I (No. Evt.).

We then wrote the task-specific rules (rightmost column,
Table I, also found on our website). We ran each in CogTool-
Helper and imported the resulting design and test cases into
CogTool. Finally, we extracted the user times using the Cog-
Tool export function and used these to generate histograms,
used to answer RQ1.

To investigate whether inferred methods can be used to
reduce the run time cost of HPRT without diminishing the
value of the resulting human performance metrics (RQ2), we
use the LibreOffice version with menus, keyboard shortcuts

TABLE I
TASKS USED IN THE FEASIBILITY STUDY

LibOff Task Task No. No.
Module Name Description Ver. Evt. Rul.
Writer Format Text Chapter typed in, M 9 4

Text selected, made MK 12 5
bold and centered MKT 13 7

Writer Insert Insert Hyperlink to M 9 3
Hyperlink Amazin and make MK 11 5

text uppercase MKT 13 8
Calc Absolute Insert abs val function, M 11 4

Value shift cells right, turn MK 14 6
off headers MKT 16 10

Impress Insert Insert a table, add new M 7 3
Table slide, hide task pane MK 9 5

MKT 11 7

and toolbars, since it has the largest number of test cases. We
randomly select (without replacement), the required number
of test cases for 10%, 25% and 50% of the complete set. We
sample five times at each percentage for each task, to prevent
bias from a single outlier run. We then run CogTool-Helper
on the samples of test cases and capture the total number of
methods in the final CogTool project, the number of those
that were inferred by CogTool-Helper, the run time required
to create the designs, and the human performance predictions
for all of the methods. We report averages of these values.

VI. RESULTS AND DISCUSSION

A. RQ1: Usefulness of HPRT

Table II shows the three versions of each task: menu
only (M), menu + keyboard (MK) and menu + keyboard +
toolbar (MKT). For each version we show the number of
test cases generated, the mean time predicted for a skilled
user to accomplish this task, the minimum predicted time, the
maximum predicted time, and the standard deviation. From
the raw predictions, we show histograms of the number of
test cases by time predictions for each task in each version of
the system (Figure 4).

Looking first at Table II, in all but one case (Absolute
Value), the mean time decreases with the addition of keyboard
shortcuts and in all cases it decreases again with the addition
of the toolbar. Since CogTool predictions have been shown to
be within +-10% of empirically observed task execution time,
Table II shows no detectable efficiency advantage for toolbars.
Perhaps more interesting, is the decrease in minimum time to
accomplish each task, which decreased by 40% for the Format
task. This suggests that the most proficient skilled users could
be substantially more efficient on this task, information that
might be used for marketing or sales were more tasks to
show this advantage. In addition, test cases that displayed this
efficiency could feed directly into training videos or ”tips of
the day” to help users attain such proficiency.

The maximum time tells a different story; in three of the
four tasks adding keyboard shortcuts increases the maximum
predicted time. Although the increase is within the predic-
tive power of CogTool, this result illustrates the concept of
detecting a regression with respect to efficiency, Examining
the models’ behavior for the max-time test cases, the increase

TABLE II
PERFORMANCE PREDICTIONS: SKILLED TASK EXECUTION TIME (SEC)

No. Mean Min Max
Task (Version) TC Time Time Time SD
Format Text (M) 3 13.8 13.7 13.8 0.1
Format Text (MK) 24 13.2 12.3 14.1 0.6
Format Text (MKT) 81 11.8 8.6 14.1 1.7
Insert Hyperlink (M) 2 20.5 19.5 21.6 1.5
Insert Hyperlink (MK) 8 20.1 18.3 21.6 1.4
Insert Hyperlink (MKT) 18 19.8 17.6 21.6 1.3
Absolute Value (M) 4 18.1 17.9 18.3 0.1
Absolute Value (MK) 32 18.3 17.7 18.8 0.2
Absolute Value (MKT) 72 17.1 14.1 18.9 1.6
Insert Table (M) 3 12.8 12.7 12.9 0.1
Insert Table (MK) 12 12.7 12.3 13.3 0.3
Insert Table (MKT) 36 12.3 11.3 13.3 0.4

158

Insert Hyperlink Task

M
MK
MKT

0
5

10
15

20

0 5 10 15 20 25

Nu
m

be
r o

f M
et

ho
ds

Seconds

Absolute Value Task

0 5 10 15 20 25

0
5

10
15

20

Nu
m

be
r o

f M
et

ho
ds

Seconds

M
MK
MKT

Insert Table Task

Seconds

Nu
m

be
r o

f M
et

ho
ds

0 5 10 15 20 25

0
5

10
15

20

M
MK
MKT

Fig. 4. Histograms of Predictions of Skilled Task Execution Times produced using HPRT. Format text task graph is annotated to show predictions for each
interface version as revealed by the single model that is typically done by a UI Designer

arises because these test cases mix menus and keyboard
shortcuts, requiring the user to move the hand between the
mouse and the keyboard. This information might encourage
project teams to increase coverage of keyboard shortcuts so
that skilled users can keep their hands on the keyboard.
Likewise, in the Absolute Value task, the maximum time
increases when toolbars are added (another regression). In this
case, the presence of the toolbar forced a dialog box to be
moved, requiring the user to move the mouse further to interact
with it. Moving the dialog box is a design decision that could
be reversed after HPRT.

Turning to the performance histograms (a contribution in
itself), we see information never attained before with pre-
dictive human performance modeling of UI efficiency. In the
past, a UI designer would typically model only one method
using the menus, one using keyboard shortcuts as much as
possible, and one using toolbars as much as possible (e.g.,
[11]) because even this simple modeling was too much effort.
The graph for the Format Text task is annotated to show the
times that a single model for each version of the UI would have
produced: 13.7s, 12.6s and 8.6s, respectively. This by-hand
analysis would have given the UI designer confidence that the
progressive addition of features would improve efficiency, but
would not have revealed the poor performance cluster of meth-
ods for the version with the toolbar. This bimodal distribution
suggests that end-users may not profit from toolbars as much
as the designer hoped and may have implications for training,

as it would be desirable to guide users to the lower cluster
of methods. This same pattern occurs for the Absolute Value
(bottom center) task, but not the Insert Hyperlink and Insert
Table tasks, where the progressive addition of features changes
the range and mean of the distribution but not the basic shape.
Predicting the distribution of times associated with methods
using different UI features plus methods using a mixture of
those features, is new to human performance modeling and
opens up possibilities for the design of UI and training not
yet imagined in the field.

Because HPRT provides the mean human performance time
that UI designers have already found useful, we can answer
RQ1 in the affirmative; HPRT has potential to provide UI
designers with useful information for design and development.
Because HPRT expands the available information to include
distributions of possible method times, its potential is even
greater than current by-hand modeling approaches.

B. RQ2: Impact of Inferred Methods

We now examine the impact of inferred methods on the
design construction phase of CogTool-Helper, to evaluate
whether we can sample test cases rather than generate and
run every test case for every task. We believe this will help in
scalability of HPRT on large tasks.

Table III shows data for two tasks on the last version of the
UI (MKT) sampled at 10%, 25% and 50%, with the number
of test cases included at that sample level presented after the

159

TABLE III
IMPACT OF INFERRED METHODS WHEN SAMPLING TEST CASES FOR VERSION (MKT) (AVERAGE OF 5 RUNS)

Design Construction CogTool Analysis
Run No. No. Mean Min Max

Task (Sample %/size) Time(m) % Reduced Methods Inferred Time(s) Time(s) Time(s)
Format Text (10%/8) 13.3 88.9 41.4 33.4 11.9 8.8 14.0
Format Text (25%/20) 31.2 74.0. 76.2 56.2 11.8 8.6 14.1
Format Text (50%/41) 61.0 49.1 81.0 40.0 11.8 8.6 14.1
Format Text (All) 120.0 – 81.0 – 11.8 8.6 14.1
Absolute Value (10%/7) 18.8 89.6 25.6 18.6 16.9 14.1 18.7
Absolute Value (25%/18) 45.8 74.7 56.4 38.4 17.0 14.1 18.9
Absolute Value (50%/36) 90.3 50.1 69.6 33.6 17.1 14.1 18.9
Absolute Value Task (All) 180.7 – 72.0 – 17.1 14.1 18.9

slash (the other tasks are similar and can be found on our
website). We show the time in minutes taken, averaged over
five samples, for CogTool-Helper to run the test cases and
create the designs, followed by the average percent reduction
over running all of the test cases (% Reduced). We list the
average number of methods in the resulting CogTool project,
along with the average number of inferred methods (methods
that were created by our inference algorithm, discussed in
Section III). The last three columns show the times in seconds
of the human performance predictions (mean, minimum and
maximum). The last row of each task contains data for the full
set of test cases.

For the 10% sample, we see an 88.9% and 89.6% reduction
in runtime, but we also see a loss in the range of predicted
human performance times. In the Absolute Value task, for
instance, we have predictions for only one third of the pos-
sible methods. However, the mean, maximum and minimum
prediction times are not far from the full data set.

In both tasks, the 50% samples show the full range of human
performance values, and we either generate all of the methods
for that task with the inferred method algorithm (Format Text),
or come within 10% of all possible methods (Absolute Value).
The runtime savings are about 50%, which equates to about
one and a half hours in the Absolute Value task. Thus, we can
also answer RQ2 in the affirmative; CogTool-Helper’s inferred
method algorithm enables effective sampling of text cases,
which may allow HPRT to scale to larger tasks than illustrated.

C. Further Discussion and Future Work

All models are approximations of reality, and, as mentioned,
CogTool reports +-10% of the average human performance a
UI designer would observe were he or she able to collect
skilled time empirically. Part of the variability in human
behavior that CogTool did not capture in previous studies is
just what we are exploring here, i.e., the variation in ways
to accomplish a task that skilled users exhibit. Another factor
is normal variation in all human performance between and
within individuals (e.g., slower performance when fatigued,
faster after having drunk a cup of coffee, etc.). HCI research is
just beginning to explore modeling tools that predict the latter
(e.g., [22]), but our implementation of HPRT is the first we
know of to make it easy to predict the former. Until validation
research progresses in HCI, it is premature to proclaim that

the results such as those in Table II and the histograms should
be trusted to make important UI design decisions. That said, it
is important to explore the types of information HPRT could
provide, and the types of interpretation a project team might
make, as the science of predicting variability matures.

It should be noted that the results we presented here arise
from using an equal weighting of all test cases to determine
values in Table II and draw the histograms. In the absence of
real-world information about our fictitious versions of Libre-
Office and tasks, we used the assumption of equal weighting
to demonstrate some of the practical implications of HPRT.
However equal weighting is not necessarily a realistic assump-
tion. Card, Moran and Newell [7] observed that people select
their methods based on personal preferences (e.g., some prefer
menus, others prefer keyboard shortcuts) or characteristics of
the task (e.g., if the user’s hand is already on the mouse, it is
more likely the user will use a toolbar button than a keyboard
shortcut). If the analysis is of a system already released, the UI
designer may have log data to refine the weighting assumption,
or prior experience with the user community (similar to Card,
Moran and Newell’s observations) may influence the weights.
If no information about method-weighting is available, the
UI designer could play ”what if” to explore the impact of
different assumptions about method-weighting on the mean
times and distribution profiles. The values and histograms will
change with different method-weighting assumptions but the
information they provide can be used to reveal properties of
the UI design as illustrated above.

It is important to remember that although our illustrative
example assessed the performance time of skilled users, ef-
ficiency is not the only dimension of usability amenable to
HPRT. As mentioned in Section III, recent modeling work with
CogTool-Explorer has predicted the ability of novice users to
discover how to do tasks on a new interface [10]. Future work
could provide HPRT for multiple usability metrics. Then, a
feature like toolbars, which did not show an advantage for
efficiency in some tasks may be shown to be more discoverable
for novice users than menus or keyboard shortcuts.

We have presented a first investigation into the ability of
HPRT to provide useful information for UI design and to scale
to real-world use. Although many more applications need to
be tested before HPRT can enter into mainstream regression
testing, LibreOffice can be considered representative of a

160

family of office software and does not have any unusual
GUI features that would make it particularly amenable to our
study. With respect to the rules that limit the extraction of a
task-relevant EFG, we believe that we have identified a good
starting set of rules, but additional rules may emerge as future
work tackles more complex tasks. For instance, our current
task specific rule for repeat is binary, but we believe that
this may need to allow specific cardinality ranges. For this
study we use the existing GUITAR test case generator which
traverses all paths of the given length on the EFG and apply
rules on each resulting test case. However, if we apply the
rules first (or as we explore the graph), then we can avoid this
bottleneck. We plan to explore both of these modifications.

Finally, this first illustration of HPRT required substantial
skill and effort to identify the widgets and event-tuples nec-
essary to accomplish tasks and to write the global and task-
specific rules. We acknowledge that this level of skill and effort
is onerous for a real-world project team. Future work must
include human-centered design to make tools usable by the
right person or people in a software project team.

VII. CONCLUSIONS

We have presented the first attempt that we know of for
human performance regression testing, HPRT. We achieved
this by extending CogTool-Helper to include a test generation
method that leverages existing functional GUI testing tools. By
identifying the events of interest and a set of rules, test cases
can be generated to mimic humanly-reasonable user tasks. Our
feasibility study has shown that ranges of human performance
predictions provide rich data that was not previously possible,
and that this will allow project teams to explore the impact
of their changes more thoroughly. We also examined the
impact of sampling and found that we retain almost all of the
information, and save as much as hours of runtime using only
half of the test cases. This shows the potential of the inferred
methods algorithm that is built into CogTool-Helper, which
had not been evaluated on this scale before. We believe this
feasibility study opens the door to a new method for rapidly
assessing the usability of UIs with potential benefit for both
SE and HCI research and practice.

ACKNOWLEDGMENTS

We thank Peter Santhanam (IBM Research) for pointing out
the connection between usability and functional GUI testing
and Atif Memon (University of Maryland) for providing us
with the newest releases of GUITAR and technical support.
This work is supported in part by IBM, the National Science
Foundation through award CCF-0747009, CNS-0855139 and
CNS-1205472, and by the Air Force Office of Scientific Re-
search, award FA9550-10-1-0406. The views and conclusions
in this paper are those of the authors and do not necessarily
reflect the position or policy of IBM, NSF or AFOSR.

REFERENCES

[1] G. Rothermel and M. J. Harrold, “A safe, efficient regression test
selection technique,” ACM Transactions on Software Engineering and
Methodology, vol. 6, no. 2, pp. 173–210, Apr. 1997.

[2] B. Beizer, Software Testing Techniques. International Thomson Com-
puter Press, 1990.

[3] C. Yilmaz, A. S. Krishna, A. Memon, A. Porter, D. C. Schmidt,
A. Gokhale, and B. Natarajan, “Main effects screening: a distributed
continuous quality assurance process for monitoring performance degra-
dation in evolving software systems,” in Proceedings of the 27th
international conference on Software engineering, ser. ICSE ’05, 2005,
pp. 293–302.

[4] D. Thakkar, A. E. Hassan, G. Hamann, and P. Flora, “A framework for
measurement based performance modeling,” in Proceedings of the 7th
international workshop on Software and performance, ser. WOSP ’08,
2008, pp. 55–66.

[5] S. Yoo, M. Harman, P. Tonella, and A. Susi, “Clustering test cases to
achieve effective & scalable prioritisation incorporating expert knowl-
edge,” in Proceedings of the International Symposium on Software
Testing and Analysis, ISSTA, July 2009, pp. 201–211.

[6] M. H. Blackmon, M. Kitajima, and P. G. Polson, “Tool for accurately
predicting website navigation problems, non-problems, problem severity,
and effectiveness of repairs,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’05), 2005, pp. 31–40.

[7] S. K. Card, A. Newell, and T. P. Moran, The Psychology of Human-
Computer Interaction. Hillsdale, NJ, USA: L. Erlbaum Associates
Inc., 1983.

[8] E. H. Chi, A. Rosien, G. Supattanasiri, A. Williams, C. Royer, C. Chow,
E. Robles, B. Dalal, J. Chen, and S. Cousins, “The bloodhound project:
automating discovery of web usability issues using the InfoScent simu-
lator,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems (CHI ’03), 2003, pp. 505–512.

[9] B. E. John and D. E. Kieras, “Using GOMS for user interface design and
evaluation: which technique?” ACM Transactions on Computer-Human
Interaction, vol. 3, no. 4, pp. 287–319, Dec. 1996.

[10] L. Teo, B. E. John, and M. H. Blackmon, “Cogtool-Explorer: A model
of goal-directed user exploration that considers information layout,” in
Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ser. CHI ’12, May 2012, pp. 2479–2488.

[11] R. Bellamy, B. John, and S. Kogan, “Deploying CogTool: integrating
quantitative usability assessment into real-world software development,”
in Proceedings of the International Conference on Software Engineering,
2011, pp. 691–700.

[12] A. Swearngin, M. B. Cohen, B. E. John, and R. K. E. Bellamy, “Easing
the generation of predictive human performance models from legacy
systems,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’12, May 2012, pp. 2489–2498.

[13] “GUITAR – a GUI Testing frAmewoRk,”
http://guitar.sourceforge.net, 2011.

[14] A. M. Memon, M. E. Pollack, and M. L. Soffa, “Hierarchical GUI
test case generation using automated planning,” IEEE Transactions on
Software Engineering, vol. 27, no. 2, pp. 144–155, Feb. 2001.

[15] B. E. John, K. Prevas, D. D. Salvucci, and K. Koedinger, “Predictive
human performance modeling made easy,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ser. CHI ’04,
2004, pp. 455–462.

[16] A. M. Memon and M. L. Soffa, “Regression testing of GUIs,” in
Proceedings of the Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE-11, 2003, pp. 118–127.

[17] A. Memon, I. Banerjee, and A. Nagarajan, “GUI ripping: Reverse
engineering of graphical user interfaces for testing,” in Proceedings of
the 10th Working Conference on Reverse Engineering, ser. WCRE ’03,
2003, pp. 260–269.

[18] F. Belli, “Finite-state testing and analysis of graphical user interfaces,” in
International Symposium on Software Reliability Engineering (ISSRE),
2001, pp. 34–43.

[19] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage criteria for
GUI testing,” in Proceedings of the European Software Engineering
Conference/ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ser. ESEC/FSE-9, 2001, pp. 256–267.

[20] T.-H. Chang, T. Yeh, and R. C. Miller, “GUI testing using computer
vision,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, ser. CHI ’10, 2010, pp. 1535–1544.

[21] “LibreOffice 3.4,” http://libreoffice.org, 2011.
[22] E. W. Patton and W. D. Gray, “SANLab-CM: A tool for incorpo-

rating stochastic operations into activity network modeling,” Behavior
Research Methods, vol. 42, no. 3, pp. 877–883, 2010.

161

