
EvoWeb: Helping Users Discover the Evolution of the Web

Amanda Swearngin

Department of Computer Science & Engineering

University of Washington

Seattle, WA USA 98195

amaswea@cs.washington.edu

ABSTRACT

Billions of people use the internet daily to connect with

friends, monitor their finances, conduct business, and keep

up with social issues. Every time the web interfaces they use

change, they can lose access to an integral part of their lives.

To address this problem, we conducted interviews to

determine the changes that users care about, finding that

users focused on groups of change on a page. We developed

and prototyped an algorithm to detect textual, visual, and

structural groups of changes between two versions of a web

page, allowing us to view a list of added, deleted, moved and

changed user interface elements or groups. In a pilot study,

our algorithm detected 54% of the changes that users

perceived, and 76.6% of added and deleted elements between

two page versions. Our study exposed the need for exploring

smarter change detection that can semantically link textually

similar elements on a page.

Author Keywords

Web applications; web page dynamics; change; re-finding

ACM Classification Keywords

H5.2: Information interfaces and presentation: User

Interfaces – Graphical user interfaces.

INTRODUCTION
Every day, billions of people access websites that are

constantly changing and evolving. The web is highly

dynamic and evolves with surprising speed over time

allowing people constant access to up to date information

about the state of the world. However, because of this, it can

be nearly impossible to find data, links, or navigational

elements after the underlying page evolves.

Over eleven weeks, Fetterly et al. [6] found changes in 35%

of a corpus of 150 million pages. Adar et al. [2] conducted a

similar study and found that 65% of pages had changed over

5 weeks. These pages changed not only in the data they

presented, but also in their interface design. Web developers

remove, move, or re-label features without notice, leaving

people searching for missing or re-labeled actions that they

cannot recognize. Norman’s “gulf of execution” [8]

describes the gap between a person’s intentions and the

Figure 1. Amazon interface over two days. Taken from [9].

necessary actions in a system. Continuous changes

constantly undermine a person’s model of an interface,

widening this gap until a person can no longer map their

intentions to interface actions, leaving them confused and

potentially unable to accomplish their goals. Figure 1 shows

the changes made to Amazon.com in the span of one day,

demonstrating the magnitude of change users must adapt to.

Given these motivations, we developed EvoWeb, a system

that detects changed user interface elements in a web page.

Through exploratory interviews, we found that users

perceived changes in groups. We designed and prototyped an

algorithm to compare two versions of a web page for

structural, visual, and textual changes. It creates groupings

of changes based on structural Document Object Model

(DOM) location. In an evaluation, we found that our

algorithm detected 54% of the changes that users perceived,

and 76% of added and deleted groups of elements.

The contributions of this work are:

 An algorithm and prototype for detecting

differences of added, deleted, moved, or visually

changed elements or groups of elements between

two versions of a web page.

 Evidence demonstrating that the algorithm we

developed can mimic the groups of changes that

users perceive and identify as change.

RELATED WORK

Existing tools can highlight differences in web page

versions, but have mostly focused on content rather than

interface changes. Arguably, one of the first, the AT&T

Difference Engine [5] archives pages and displays

Submitted for Review

mailto:amaswea@cs.washington.edu

differences between consecutive versions. However, it

considers only the DOM structure and textual content.

Zoetrope [1] allows people to analyze a specific area of a web

page (lense) for change over time, but focuses on data

analysis, and not in helping users navigate interface changes.

Zoetrope only collects screenshots of lenses over time, and

does not perform a comparison for change detection.

Previous techniques for detecting change in web pages used

tree alignment techniques to create mappings between nodes

in the DOM tree [3,4,7,12]. Teevan et al. [11] presents

DiffIE, a browser plugin that uses tree alignment to detect

change, highlighting how pages have changed since the user

last visited them. Although this system has many practical

applications, it does not evaluate visual changes which can

obscure content making changes unrecognizable to the user.

Bricolage [10] uses a structured prediction algorithm based

on human-generated mappings to map two versions of a

page. They consider visual, structural, and semantic

constraints in creating the mappings; however, their

technique targets completely different web pages, and not

multiple versions of the same web page. Because we only

want to compare two versions of the same webpage, tree

alignment algorithms will work for our purposes.

EXPLORATORY INTERVIEWS

To guide the development of our change detection algorithm,

we conducted five unstructured interviews to explore the

factors to consider for a change detection and notification

system. Participants were University of Washington CSE

Ph.D. students. We gave users printouts of three categories

of websites: news, banking, and number generation. We

asked them to imagine they had a web page change

notification system, and had them circle the areas of the

interface that should be included. The key finding of our

interviews was that people tended to group the areas of

change, such as all the links in the website header or footer.

Consequently, we designed our change detection algorithm

to highlight the changes in groups, rather than individually.

Users expressed that the content in the headers and footers

was important. For content in between, such as articles in a

news website, results were more ambiguous. This is likely

due to the transitory nature of the content. Page content (e.g.,

news articles) typically changes daily or weekly.

Navigational elements like headers and footers typically

change on version updates. The site’s utility also had an

impact. Users would not want notification for changes for

unused user interface elements. Because the importance of a

change may differ between users, we could filter out content

or changes to unused elements over time.

CHANGE DETECTION ALGORITHM

Our change detection algorithm identifies changes at the

Document Object Model (DOM) level, using the DOM

content and the browser’s runtime computed styles to expose

the changes. The DOM defines the structure, style, and

content of a web page. The DOM is interacted with through

HTML, JavaScript, and CSS, which define the content,

interactivity, and style of a web page, respectively.

Internally, a browser represents a DOM as a tree. Each user

interface element or HTML tag is a node in the tree (Figure

2). Our algorithm operates on this tree, and the runtime

computed styles, which is a list of the values of an element’s

CSS properties after applying the stylesheet and rendering

the element. The algorithm compares two versions of a DOM

tree, V1 and V2, to find changed nodes or groups of nodes.

Figure 2. Change detection algorithm tree alignment.

Algorithm Goals

The goal of our change detection algorithm is to detect

groups of added, deleted, moved, and changed user interface

elements (shown in Figure 2). Each element corresponds to

a node in the DOM tree. The groups we detect are as follows:

- Added. The node did not exist in V1, and exists in V2.

- Deleted. The node existed in V1, but does not exist in V2.

- Moved. The node has a different parent in V1 and V2.

- Changed. The node has not moved but a computed style

has changed (e.g., color, font).

Nodes in each category can be leaf nodes, which have no

child nodes, or non-leaf nodes, which have child nodes.

Phase 1: Matching Leaf Nodes

In phase one of the algorithm, we attempt to match each leaf

node in V1 to a leaf node in V2. We determine if two leaf

nodes match by their tagName (e.g., “div,” “button”, etc.),

and innerHTML, the textual content of the node. If they

match, we compare the output affecting attributes. Attributes

are properties of the DOM node that are specified inline on

the HTML tag (e.g., “disabled”, “href”). An attribute is

output affecting if its use causes a visual change to the DOM

element when rendered. Examples of output affecting

attributes for <button> are “disabled,” and “hidden.” For

our purposes, we only identify changes visible to the user, so

we do not compare any non-output affecting attributes.

After the algorithm compares these attributes, it identifies

whether the leaf node is a match. The algorithm aligns leaf

nodes as in Figure 2. At the end of the process, the algorithm

has created a list of added, deleted, moved, and matched leaf

nodes. Matched nodes have a matching leaf node in V2. We

will compare them in phase three for visual differences.

Phase 2: Aligning Non-Leaf Nodes

In phase two, the algorithm matches ancestor nodes of leaf

nodes to align the structure of the tree. This follows other tree

alignment strategies [4,7,12]. Non-leaf nodes are matched by

finding the node’s children in V1 and finding their

corresponding locations in V2. The match is the parent node

that has the most matching children in V2. For example, in

Figure 2, node 1 matches node 3. In V1, node 1 has two child

nodes, <a> and <button>. In V2, node 4 is the parent of

<a>, and node 3 is the parent of <button>. Since there

are an equal or greater number of children that exist in the

original parent node location, node 3 is the match. The

algorithm adds child nodes that are not beneath the original

parent node to the moved list, and adds child nodes that did

not exist in V1 but exist in V2 to the added list. The process

continues until all non-leaf nodes are matched or placed in

the added or deleted list.

Phase 3: Computing Visual Differences

In phase three, the algorithm iterates through the matched

list and computes the visual differences. We obtain these

from the elements computed styles. The algorithm compares

each computed style value to its corresponding value in the

matched node. We currently ignore a few specific computed

styles: top, left, and position. This is because we wanted to

categorize moved nodes separately, and define a move as a

re-parenting in the tree hierarchy.

Phase 4: Creating Groups of Change

For the final step in the process, we create groups of change.

For each node in the added, deleted, moved, and

changed lists, if the parent of that node also exists in the

list, we remove that node. At the end, only the top-level node

in the hierarchy chain will end up in the list. In Figure 2, only

node 4 will end up in the added list.

Results of Algorithm

Figure 3 shows the results of our algorithm on Ancestry.com.

We prototyped our algorithm as a Google Chrome extension,

and implemented it in JavaScript. It requires two versions of

the page to be open in two tabs. We retrieved previous

versions of sites from the Wayback Machine [9].

ALGORITHM EVALUATION

To evaluate our algorithm’s effectiveness in identifying

changes, we conducted a study to identify the changes that

users perceived and compare them against the changes our

algorithm identified to determine if there was a correlation.

We had participants describe the groups of changes to help

us key phrases associated with each group of change.

Participants

We collected data from nine participants (7 male, 2 female),

recruited through an on-campus mailing list targeted toward

graduate students. Two of the participants had worked as

professional web developers. The rest of the participants had

no professional experience or less than one year of web

development experience.

Figure 3. Results of algorithm on Ancestry.com website.

Previous version of Ancestry retrieved from [9].

Apparatus

We gave each participant large, color printouts of before and

after versions of web pages, marked with “before” and

“after”. Participants marked changes using colored markers.

We selected before and after versions of three websites from

the Wayback Machine [9], and Alexa.com top sites rankings.

Procedure

Each participant completed a two-part exercise. In part one,

they marked the deleted user interface elements on the

“before” version, and the added, moved, and changed

elements on the “after” version. In part two, they gave a one-

sentence description for each of the changes that they listed

(not including the added, deleted, and moved changes). We

do not report the results of part two as we were not able to

collect enough data to observe any interesting patterns.

Design & Analysis

We construct the ground truth for comparison from the

changes users identified. For each web page, we collected a

list of the changes found by users and by EvoWeb. If the

majority of users found a change, and EvoWeb found the

change, we consider that a true positive. If the majority of

users did not find the change, and EvoWeb found the change,

we consider it a Type I error or false positive. The full error

matrix that we evaluated EvoWeb against is in Table 1.

 Users found Users did not find

EW found True positive False positive

EW did not find False negative True negative

Table 1. Full error matrix for evaluation.

RESULTS

For PayPal.com, EvoWeb found 48.1% of the same changes

that users identified. But, it found seven additional changes

that users did not find. Of the 14 differences that EvoWeb

missed, eight were changes.

For Ancestry.com, EvoWeb found 50% of the same changes

that the users identified, out of 6 total changes. There were

also eight false positives. For Ancestry.com (Figure 3), the

bottom links group with “Geneology Resources,” and

“Historical Collections,” was marked as deleted. All

participants also marked this as deleted. However, EvoWeb

marked the “Start 14-day free trial,” “Subscribe now,” and

“Explore AncestryDNA” buttons as deleted in V1 and added

in V2. All users marked these as a change in both versions.

For SimpleBots.co, EvoWeb found 66.6% of the changes

that the users identified, out of 15 total changes. There were

also no false positives found for SimpleBots, but there were

still five false negatives. The slogan changed from “Nice

Apps for Good People” to “Simple Apps for Complex

People.” The slogan remained in the same location. EvoWeb

identified the slogan as deleted in V1 and added in V2. All

users marked the slogan as changed.

Overall, EvoWeb detected 87.5% of the deleted elements

that users found across all three sites. EvoWeb also found

62.3% of the added elements that users found. EvoWeb also

found a high number of false positives (7 adds, 8 deletes),

corresponding to a set of changes users identified as the same

element but changed. In total, users found thirteen changes

and two moves not found by EvoWeb. Table 2 contains the

full results of the changes found by EvoWeb and the users.

DISCUSSION

One issue we found is that EvoWeb does not detect changes

that users can semantically link. For example, on PayPal.com

V1, there was a slogan “Pay securely. Here, there, and

everywhere.” In the same location on V2, the slogan text

changed to “Join the 173 million users already shopping with

PayPal.” Users tagged this difference as a change, while

EvoWeb tagged it as a delete in V1 and as an add in V2.

Table 2. Results for each website. Y indicates the change was

detected. N indicates the change was not detected.

Another issue that we found was that an elements internal tag

type can change, causing our algorithm to miss a match. With

Ancestry.com, we found that the internal tag type of some

buttons had changed, causing them to be marked as deleted.

Users were also able to detect moves that EvoWeb could not

detect, due to limitations of our algorithm. EvoWeb classifies

a “move” as when an element moves structurally within the

DOM tree. Users found a “move” for an element when its

pixel-based location on the page changed significantly

enough for them to detect it. Based on this finding, we might

explore pixel-based location detection in the future.

FUTURE WORK

Currently EvoWeb highlights all detected changes.

However, our studies indicated that users might not care

about all changes. We plan to implement a customized

filtering mechanism for each user; perhaps by collecting

interaction traces to discover their most frequent actions. We

would also like to explore alternate interfaces and

presentations for presenting the changes. Currently, we

simply highlight the detected changes. In the future, we will

explore a more interactive tutorial-like interface that walks

the users through their own set of relevant changes.

We would also like to address limitations to our matching

algorithm. Our study indicated that our algorithm cannot

semantically map together changed elements where the text

changes because we use strict matching for text content. To

address this, we plan to explore text similarity matching.

CONCLUSION

We presented EvoWeb, a system for detecting change in

web. The system highlights groups of added, deleted, moved,

and changed user interface elements. We found that our

algorithm detects the majority of added and deleted groups

that users identified, but does identify any changes that users

were able to semantically link together, indicating a need for

smarter mapping of textually similar elements. Building on

these results, we will further improve the system, and work

towards a solution to help users navigate the unceasing and

endless changes made on the web every day.

ACKNOWLEDGMENTS

This work was supported by the National Science

Foundation (NSF) under grant CHS 1314399. We thank

Daniel Epstein, Kyle Thayer, and Jacob Wobbrock for their

feedback on early drafts. We also thank Andy Ko and James

Fogarty for their helpful guidance on the research.

 PayPal

Users

Ancestry

Users

SimpleBots

Users

EW Y N Y N Y N

Y 13 7 3 8 10 0

N 14 X 3 X 5 X

REFERENCES

1. Eytan Adar, Mira Dontcheva, James Fogarty, and

Daniel S. Weld. 2008. Zoetrope: interacting with the

ephemeral web. In Proceedings of the 21st Annual

ACM Symposium on User Interface Software and

Technology (UIST '08). ACM, New York, NY, USA,

239-248. http://dx.doi.org/10.1145/1449715.1449756

2. Eytan Adar, Jaime Teevan, Susan T. Dumais, and

Jonathan L. Elsas. 2009. The web changes everything:

understanding the dynamics of web content.

In Proceedings of the Second ACM International

Conference on Web Search and Data Mining (WSDM

'09). ACM, New York, NY, USA, 282-291.

http://dx.doi.org/10.1145/1498759.1498837

3. Kevin Borgolte, Christopher Kruegel, and Giovanni

Vigna. 2014. Relevant change detection: a framework

for the precise extraction of modified and novel web-

based content as a filtering technique for analysis

engines. In Proceedings of the 23rd International

Conference on World Wide Web (WWW ’14). ACM,

New York, NY, USA, 595–598.

http://doi.org/10.1145/2567948.2578039

4. Mira Dontcheva, Steven M. Drucker, David Salesin,

and Michael F. Cohen. 2007. Changes in Webpage

Structure Over Time. Technical Report TR2007-04-02,

UW CSE.

5. Fred Douglis, Thomas Ball, Yih‐Farn Chen, and

Eleftherios Koutsofios. The AT&T Internet Difference

Engine: Tracking and viewing changes on the web.

World Wide Web 1, 1: 27–44.

http://doi.org/10.1023/A:1019243126596

6. Dennis Fetterly, Mark Manasse, Marc Najork, and

Janet Wiener. 2003. A large-scale study of the

evolution of web pages. In Proceedings of the 12th

International Conference on World Wide Web (WWW

'03). ACM, New York, NY, USA, 669-678.

http://dx.doi.org/10.1145/775152.775246.

7. Andrew Hogue and David Karger. 2005. Thresher:

automating the unwrapping of semantic content from

the World Wide Web. In Proceedings of the 14th

International Conference on World Wide Web (WWW

’05). ACM, New York, NY, USA, 86-95.

http://doi.org/10.1145/1060745.1060762

8. Edwin L. Hutchins, James D. Hollan, and Donald A.

Norman. 1985. Direct Manipulation Interfaces. In D.A.

Norman, & Draper, S. W. (Eds.), User-Centered

System Design, Hillsdale, NJ, USA, Lawrence Erlbaum

Associates.

9. Internet Archive: Wayback Machine. Retrieved

December 2, 2015 from https://archive.org/web/

10. Ranjitha Kumar, Jerry O. Talton, Salman Ahmad, and

Scott R. Klemmer. 2011. Bricolage: example-based

retargeting for web design. In Proceedings of the

SIGCHI Conference on Human Factors in Computing

Systems (CHI ’11). ACM, New York, NY, USA, 2197-

2206. http://doi.org/10.1145/1978942.1979262

11. Jaime Teevan, Susan T. Dumais, Daniel J. Liebling,

and Richard L. Hughes. 2009. Changing how people

view changes on the web. In Proceedings of the 22nd

Annual ACM Symposium on User Interface Software

and Technology (UIST ’09). ACM, New York, NY,

USA, 237-246.

http://doi.org/10.1145/1622176.1622221

12. Yanhong Zhai and Bing Liu. 2005. Web data

extraction based on partial tree alignment. In

Proceedings of the 14th International Conference on

World Wide Web (WWW ’05). ACM, New York, NY,

USA, 76-85. http://doi.org/10.1145/1060745.1060761

http://dx.doi.org/10.1145/1449715.1449756
http://dx.doi.org/10.1145/1498759.1498837
http://doi.org/10.1145/2567948.2578039
http://doi.org/10.1023/A:1019243126596
http://dx.doi.org/10.1145/775152.775246
http://doi.org/10.1145/1060745.1060762
https://archive.org/web/
http://doi.org/10.1145/1978942.1979262
http://doi.org/10.1145/1622176.1622221
http://doi.org/10.1145/1060745.1060761

