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ABSTRACT 

Billions of people use the internet daily to connect with 

friends, monitor their finances, conduct business, and keep 

up with social issues. Every time the web interfaces they use 

change, they can lose access to an integral part of their lives. 

To address this problem, we conducted interviews to 

determine the changes that users care about, finding that 

users focused on groups of change on a page. We developed 

and prototyped an algorithm to detect textual, visual, and 

structural groups of changes between two versions of a web 

page, allowing us to view a list of added, deleted, moved and 

changed user interface elements or groups. In a pilot study, 

our algorithm detected 54% of the changes that users 

perceived, and 76.6% of added and deleted elements between 

two page versions. Our study exposed the need for exploring 

smarter change detection that can semantically link textually 

similar elements on a page. 
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INTRODUCTION 
Every day, billions of people access websites that are 

constantly changing and evolving. The web is highly 

dynamic and evolves with surprising speed over time 

allowing people constant access to up to date information 

about the state of the world. However, because of this, it can 

be nearly impossible to find data, links, or navigational 

elements after the underlying page evolves.  

Over eleven weeks, Fetterly et al. [6] found changes in 35% 

of a corpus of 150 million pages. Adar et al. [2] conducted a 

similar study and found that 65% of pages had changed over 

5 weeks. These pages changed not only in the data they 

presented, but also in their interface design. Web developers 

remove, move, or re-label features without notice, leaving 

people searching for missing or re-labeled actions that they 

cannot recognize. Norman’s “gulf of execution” [8] 

describes the gap between a person’s intentions and the  

Figure 1. Amazon interface over two days. Taken from [9]. 

necessary actions in a system. Continuous changes 

constantly undermine a person’s model of an interface, 

widening this gap until a person can no longer map their 

intentions to interface actions, leaving them confused and 

potentially unable to accomplish their goals. Figure 1 shows 

the changes made to Amazon.com in the span of one day, 

demonstrating the magnitude of change users must adapt to. 

Given these motivations, we developed EvoWeb, a system 

that detects changed user interface elements in a web page. 

Through exploratory interviews, we found that users 

perceived changes in groups. We designed and prototyped an 

algorithm to compare two versions of a web page for 

structural, visual, and textual changes. It creates groupings 

of changes based on structural Document Object Model 

(DOM) location. In an evaluation, we found that our 

algorithm detected 54% of the changes that users perceived, 

and 76% of added and deleted groups of elements.   

The contributions of this work are:  

 An algorithm and prototype for detecting 

differences of added, deleted, moved, or visually 

changed elements or groups of elements between 

two versions of a web page. 

 Evidence demonstrating that the algorithm we 

developed can mimic the groups of changes that 

users perceive and identify as change.  

RELATED WORK 

Existing tools can highlight differences in web page 

versions, but have mostly focused on content rather than 

interface changes. Arguably, one of the first, the AT&T 

Difference Engine [5] archives pages and displays 
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differences between consecutive versions. However, it 

considers only the DOM structure and textual content. 

Zoetrope [1] allows people to analyze a specific area of a web 

page (lense) for change over time, but focuses on data 

analysis, and not in helping users navigate interface changes. 

Zoetrope only collects screenshots of lenses over time, and 

does not perform a comparison for change detection.   

Previous techniques for detecting change in web pages used 

tree alignment techniques to create mappings between nodes 

in the DOM tree [3,4,7,12].  Teevan et al. [11] presents 

DiffIE, a browser plugin that uses tree alignment to detect 

change, highlighting how pages have changed since the user 

last visited them. Although this system has many practical 

applications, it does not evaluate visual changes which can 

obscure content making changes unrecognizable to the user.  

Bricolage [10] uses a structured prediction algorithm based 

on human-generated mappings to map two versions of a 

page. They consider visual, structural, and semantic 

constraints in creating the mappings; however, their 

technique targets completely different web pages, and not 

multiple versions of the same web page. Because we only 

want to compare two versions of the same webpage, tree 

alignment algorithms will work for our purposes.  

EXPLORATORY INTERVIEWS 

To guide the development of our change detection algorithm, 

we conducted five unstructured interviews to explore the 

factors to consider for a change detection and notification 

system. Participants were University of Washington CSE 

Ph.D. students.  We gave users printouts of three categories 

of websites: news, banking, and number generation. We 

asked them to imagine they had a web page change 

notification system, and had them circle the areas of the 

interface that should be included. The key finding of our 

interviews was that people tended to group the areas of 

change, such as all the links in the website header or footer. 

Consequently, we designed our change detection algorithm 

to highlight the changes in groups, rather than individually. 

Users expressed that the content in the headers and footers 

was important. For content in between, such as articles in a 

news website, results were more ambiguous. This is likely 

due to the transitory nature of the content. Page content (e.g., 

news articles) typically changes daily or weekly. 

Navigational elements like headers and footers typically 

change on version updates. The site’s utility also had an 

impact. Users would not want notification for changes for 

unused user interface elements. Because the importance of a 

change may differ between users, we could filter out content 

or changes to unused elements over time. 

CHANGE DETECTION ALGORITHM 

Our change detection algorithm identifies changes at the 

Document Object Model (DOM) level, using the DOM 

content and the browser’s runtime computed styles to expose 

the changes. The DOM defines the structure, style, and 

content of a web page. The DOM is interacted with through 

HTML, JavaScript, and CSS, which define the content, 

interactivity, and style of a web page, respectively.  

Internally, a browser represents a DOM as a tree. Each user 

interface element or HTML tag is a node in the tree (Figure 

2). Our algorithm operates on this tree, and the runtime 

computed styles, which is a list of the values of an element’s 

CSS properties after applying the stylesheet and rendering 

the element. The algorithm compares two versions of a DOM 

tree, V1 and V2, to find changed nodes or groups of nodes. 

Figure 2. Change detection algorithm tree alignment. 

Algorithm Goals 

The goal of our change detection algorithm is to detect 

groups of added, deleted, moved, and changed user interface 

elements (shown in Figure 2). Each element corresponds to 

a node in the DOM tree. The groups we detect are as follows:  

- Added. The node did not exist in V1, and exists in V2.  

- Deleted. The node existed in V1, but does not exist in V2.  

- Moved. The node has a different parent in V1 and V2.  

- Changed. The node has not moved but a computed style 

has changed (e.g., color, font). 

Nodes in each category can be leaf nodes, which have no 

child nodes, or non-leaf nodes, which have child nodes.  

Phase 1: Matching Leaf Nodes 

In phase one of the algorithm, we attempt to match each leaf 

node in V1 to a leaf node in V2. We determine if two leaf 

nodes match by their tagName (e.g., “div,” “button”, etc.), 

and innerHTML, the textual content of the node. If they 

match, we compare the output affecting attributes. Attributes 

are properties of the DOM node that are specified inline on 

the HTML tag (e.g., “disabled”, “href”). An attribute is 

output affecting if its use causes a visual change to the DOM 

element when rendered. Examples of output affecting 

attributes for <button> are “disabled,” and “hidden.” For 

our purposes, we only identify changes visible to the user, so 

we do not compare any non-output affecting attributes.  

After the algorithm compares these attributes, it identifies 

whether the leaf node is a match. The algorithm aligns leaf 

nodes as in Figure 2. At the end of the process, the algorithm 

has created a list of added, deleted, moved, and matched leaf 

nodes. Matched nodes have a matching leaf node in V2. We 

will compare them in phase three for visual differences.   



Phase 2: Aligning Non-Leaf Nodes 

In phase two, the algorithm matches ancestor nodes of leaf 

nodes to align the structure of the tree. This follows other tree 

alignment strategies [4,7,12]. Non-leaf nodes are matched by 

finding the node’s children in V1 and finding their 

corresponding locations in V2.  The match is the parent node 

that has the most matching children in V2. For example, in 

Figure 2, node 1 matches node 3. In V1, node 1 has two child 

nodes, <a> and <button>. In V2, node 4 is the parent of 

<a>, and node 3 is the parent of <button>. Since there 

are an equal or greater number of children that exist in the 

original parent node location, node 3 is the match. The 

algorithm adds child nodes that are not beneath the original 

parent node to the moved list, and adds child nodes that did 

not exist in V1 but exist in V2 to the added list. The process 

continues until all non-leaf nodes are matched or placed in 

the added or deleted list.  

Phase 3: Computing Visual Differences 

In phase three, the algorithm iterates through the matched 

list and computes the visual differences. We obtain these 

from the elements computed styles. The algorithm compares 

each computed style value to its corresponding value in the 

matched node. We currently ignore a few specific computed 

styles: top, left, and position. This is because we wanted to 

categorize moved nodes separately, and define a move as a 

re-parenting in the tree hierarchy.  

Phase 4: Creating Groups of Change 

For the final step in the process, we create groups of change. 

For each node in the added, deleted, moved, and 

changed lists, if the parent of that node also exists in the 

list, we remove that node. At the end, only the top-level node 

in the hierarchy chain will end up in the list. In Figure 2, only 

node 4 will end up in the added list. 

Results of Algorithm 

Figure 3 shows the results of our algorithm on Ancestry.com. 

We prototyped our algorithm as a Google Chrome extension, 

and implemented it in JavaScript. It requires two versions of 

the page to be open in two tabs. We retrieved previous 

versions of sites from the Wayback Machine [9].  

ALGORITHM EVALUATION 

To evaluate our algorithm’s effectiveness in identifying 

changes, we conducted a study to identify the changes that 

users perceived and compare them against the changes our 

algorithm identified to determine if there was a correlation. 

We had participants describe the groups of changes to help 

us key phrases associated with each group of change.  

Participants 

We collected data from nine participants (7 male, 2 female), 

recruited through an on-campus mailing list targeted toward 

graduate students. Two of the participants had worked as 

professional web developers. The rest of the participants had 

no professional experience or less than one year of web 

development experience.  

Figure 3. Results of algorithm on Ancestry.com website. 

Previous version of Ancestry retrieved from [9]. 

Apparatus 

We gave each participant large, color printouts of before and 

after versions of web pages, marked with “before” and 

“after”. Participants marked changes using colored markers. 

We selected before and after versions of three websites from 

the Wayback Machine [9], and Alexa.com top sites rankings. 

Procedure 

Each participant completed a two-part exercise. In part one, 

they marked the deleted user interface elements on the 

“before” version, and the added, moved, and changed 

elements on the “after” version. In part two, they gave a one-

sentence description for each of the changes that they listed 

(not including the added, deleted, and moved changes). We 

do not report the results of part two as we were not able to 

collect enough data to observe any interesting patterns.   



Design & Analysis 

We construct the ground truth for comparison from the 

changes users identified. For each web page, we collected a 

list of the changes found by users and by EvoWeb. If the 

majority of users found a change, and EvoWeb found the 

change, we consider that a true positive. If the majority of 

users did not find the change, and EvoWeb found the change, 

we consider it a Type I error or false positive. The full error 

matrix that we evaluated EvoWeb against is in Table 1. 

 Users found Users did not find 

EW found True positive False positive  

EW did not find False negative  True negative 

Table 1. Full error matrix for evaluation. 

RESULTS 

For PayPal.com, EvoWeb found 48.1% of the same changes 

that users identified. But, it found seven additional changes 

that users did not find. Of the 14 differences that EvoWeb 

missed, eight were changes.  

For Ancestry.com, EvoWeb found 50% of the same changes 

that the users identified, out of 6 total changes. There were 

also eight false positives. For Ancestry.com (Figure 3), the 

bottom links group with “Geneology Resources,” and 

“Historical Collections,” was marked as deleted. All 

participants also marked this as deleted. However, EvoWeb 

marked the “Start 14-day free trial,” “Subscribe now,” and 

“Explore AncestryDNA” buttons as deleted in V1 and added 

in V2. All users marked these as a change in both versions.  

For SimpleBots.co, EvoWeb found 66.6% of the changes 

that the users identified, out of 15 total changes. There were 

also no false positives found for SimpleBots, but there were 

still five false negatives. The slogan changed from “Nice 

Apps for Good People” to “Simple Apps for Complex 

People.” The slogan remained in the same location. EvoWeb 

identified the slogan as deleted in V1 and added in V2. All 

users marked the slogan as changed.  

Overall, EvoWeb detected 87.5% of the deleted elements 

that users found across all three sites. EvoWeb also found 

62.3% of the added elements that users found. EvoWeb also 

found a high number of false positives (7 adds, 8 deletes), 

corresponding to a set of changes users identified as the same 

element but changed. In total, users found thirteen changes 

and two moves not found by EvoWeb. Table 2 contains the 

full results of the changes found by EvoWeb and the users.  

DISCUSSION 

One issue we found is that EvoWeb does not detect changes 

that users can semantically link. For example, on PayPal.com 

V1, there was a slogan “Pay securely. Here, there, and 

everywhere.” In the same location on V2, the slogan text 

changed to “Join the 173 million users already shopping with 

PayPal.” Users tagged this difference as a change, while 

EvoWeb tagged it as a delete in V1 and as an add in V2.  

Table 2. Results for each website. Y indicates the change was 

detected. N indicates the change was not detected. 

Another issue that we found was that an elements internal tag 

type can change, causing our algorithm to miss a match. With 

Ancestry.com, we found that the internal tag type of some 

buttons had changed, causing them to be marked as deleted.  

Users were also able to detect moves that EvoWeb could not 

detect, due to limitations of our algorithm. EvoWeb classifies 

a “move” as when an element moves structurally within the 

DOM tree. Users found a “move” for an element when its 

pixel-based location on the page changed significantly 

enough for them to detect it. Based on this finding, we might 

explore pixel-based location detection in the future.  

FUTURE WORK 

Currently EvoWeb highlights all detected changes. 

However, our studies indicated that users might not care 

about all changes. We plan to implement a customized 

filtering mechanism for each user; perhaps by collecting 

interaction traces to discover their most frequent actions. We 

would also like to explore alternate interfaces and 

presentations for presenting the changes. Currently, we 

simply highlight the detected changes. In the future, we will 

explore a more interactive tutorial-like interface that walks 

the users through their own set of relevant changes.  

We would also like to address limitations to our matching 

algorithm. Our study indicated that our algorithm cannot 

semantically map together changed elements where the text 

changes because we use strict matching for text content. To 

address this, we plan to explore text similarity matching.  

CONCLUSION 

We presented EvoWeb, a system for detecting change in 

web. The system highlights groups of added, deleted, moved, 

and changed user interface elements. We found that our 

algorithm detects the majority of added and deleted groups 

that users identified, but does identify any changes that users 

were able to semantically link together, indicating a need for 

smarter mapping of textually similar elements. Building on 

these results, we will further improve the system, and work 

towards a solution to help users navigate the unceasing and 

endless changes made on the web every day.  
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