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Abstract. The recent advancements in multimodal large language mod-
els (MLLMs) have been noteworthy, yet, these general-domain MLLMs
often fall short in their ability to comprehend and interact effectively
with user interface (UI) screens. In this paper, we construct Ferret-UI,
a new MLLM tailored for enhanced understanding of mobile UI screens,
equipped with referring, grounding, and reasoning capabilities. we metic-
ulously gathered training samples from an extensive range of fundamen-
tal UI tasks, such as icon recognition, find text, and widget listing. These
samples are formatted for instruction-following with region annotations
to facilitate precise referring and grounding. Moreover, to augment the
model’s reasoning ability, we compile a dataset for advanced tasks in-
spired by Ferret, but with a focus on mobile screens. This methodol-
ogy enables the training of Ferret-UI, a model that exhibits outstanding
comprehension of UI screens and the ability to execute open-ended in-
structions, thereby facilitating UI operations. To rigorously evaluate its
capabilities, we establish a comprehensive benchmark encompassing the
aforementioned tasks. Ferret-UI not only outstrips most open-source UI
MLLMs in performance but also achieves parity with GPT-4V, marking
a significant advancement in the field.

Keywords: UI Understanding · Multimodal Large Language Model (MLLM)

1 Introduction

Using mobile applications has become an important part of daily life. Particu-
larly, people use different mobile applications to achieve personal goals such as
information search, reservation, entertainment, and directions. In this usage, we
inspect the current screen visually, and perform the desired actions based on our
goals. Automating this process of perception and interaction has the potential
to help users achieve their goals with relative ease. Moreover, it is also a valu-
able building block for accessibility [13], multi-step UI navigation [18,40,48], app
testing [2, 29], usability studies [22], and many others.

To facilitate the seamless automation of perception and interaction within
user interfaces, a sophisticated system endowed with a set of key capabilities
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Fig. 1: Ferret-UI is able to perform referring tasks (e.g., widget classification, icon
recognition, OCR) and grounding tasks (e.g., find widget, find icon, find text, widget
listing) on mobile UI screens. These elementary tasks enrich the model with both vi-
sual and spatial knowledge, enabling it to distinguish among different UI types at both
broad and fine levels, such as between various icons or text elements. This foundational
knowledge is crucial for performing more advanced tasks. Specifically, Ferret-UI is able
to not only discuss visual elements in detailed description and perception conversa-
tion, but also propose goal-oriented actions in interaction conversation and deduce the
overall function of the screen via function inference.

is essential. Such a system must possess the ability to not only apprehend the
entirety of a screen but also to concentrate on specific UI elements within that
screen. With visual understanding as the foundation, it should further be able
to map natural language instructions to corresponding actions within a given
UI, execute advanced reasoning, and provide exhaustive details concerning the
screens it interacts with. These requirements necessitate the development of a
vision-language model adept at both referring and grounding in relation to UI
screens. Here, referring requires the system to utilize particular regional image
information in the screen input, while grounding involves the model’s capacity
to identify and denote precise locations on the screen in its outputs.

To achieve our objectives in enhancing mobile UI understanding, we focus on
three pivotal dimensions: network architecture, data creation, and establishment
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Fig. 2: Overview of Ferret-UI architecture. A pre-trained image encoder and projection
layer produces image features for the entire screen. For text with regional references, a
visual sampler generates a corresponding regional continuous feature. The LLM uses the
full-image representation, regional feature, and text embeddings to generate a response.

of benchmarks. For network architecture, we base our approach on Ferret [46], a
Multimodal Large Language Model (MLLM) known for its strong performance
to perform both referring and grounding with natural images. We posit that
Ferret’s capabilities provide a solid foundation in interactive UI-centric tasks.

Using MLLMs for UI tasks is not a new concept. However, existing work
have primarily focused on processing entire screens as singular inputs (e.g.,
Pix2Struct [25], ILuvUI [21], CogAgent [18]), only supports referring tasks with
one bounding box in the input (e.g., Spotlight [27]), leveraging GPT-4V [44]
to navigate UI screens, as seen in MM-Navigator [42], AppAgent [48], Mo-
bileAgent [40]). In contrast, Ferret-UI emerges as the inaugural MLLM designed
to execute precise referring and grounding tasks specific to UI screens, while
adeptly interpreting and acting upon open-ended language directives.

To train Ferret-UI, we generate data at different granularities, covering basic
semantic and spatial tasks for UI primitives to advanced reasoning tasks. We first
generate training samples for basic UI tasks using a template-based approach.
This encompasses referring tasks such as widget classification, icon recognition,
OCR, and grounding tasks like find widget, find icon, find text, and widget listing.
These tasks are instrumental in teaching the model to understand the semantics
and spatial positioning of UI elements, enabling the model to make distinctions
at both a broad level (among various UI types) and a more detailed level (within
specific UI types, such as icons or text). For advanced tasks, we use GPT-4 [33]
to generate data, including detailed description, conversation perception, con-
versation interaction, and function inference. These advanced tasks prepare the
model to engage in more nuanced discussions about visual components, formu-
late action plans with specific goals in mind, and interpret the general purpose
of a screen. Fig. 1 illustrates examples of Ferret-UI’s proficiency in handling the
11 tasks ranging from basic to advanced.

To assess these capabilities, we develop a comprehensive test benchmark fea-
turing 14 diverse mobile UI tasks in terms of referring and grounding. This
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includes 3 tasks from Spotlight [27] (screen2words, widget captions, and taper-
ception), and dual versions of the 11 UI tasks previously described, tailored
for both iPhone and Android screens. In our evaluation process, we conduct
comprehensive benchmarking of a variety of UI understanding models. This in-
cludes assessments of open-source models such as CogAgent [18] and Fuyu [5],
alongside evaluations of commercial models, including GPT-4V. We observe that
Ferret-UI significantly surpasses the base Ferret model, illustrating a significant
domain-specific gap. Ferret-UI is also on par wtih GPT-4V and notably, in the
context of advanced tasks, Ferret-UI surpasses the performance of both Fuyu
and CogAgent.

Our contributions are summarized as follows. (i) We have conceptualized and
designed a hierarchy that encompasses both elementary and advanced UI tasks,
for which we have meticulously gathered training samples specifically tailored to
facilitate model training. (ii) We have developed Ferret-UI, the first UI-centric
MLLM that is capable of effectively executing referring, grounding, and reason-
ing tasks. (iii) We have constructed a comprehensive test suite of all the tasks
encompassing all tasks under investigation, and through rigorous experiments
and analysis, we offer insights into the model’s capabilities and limitations.

2 Preliminaries

Existing MLLMs for UI. Earlier works [6, 17, 28, 30, 37] in the area focus on
studying simplified web and mobile screens. With recent advances in both LLMs
and MLLMs [3,12,15,19,20,33,39], the approaches to many problems have been
transformed, including the UI field. Many works have demonstrate the capability
of using other existing MLLMs [9,26,31,38,45,55] for UI tasks. ILuvUI [21] and
Spotlight [27] concentrating on single-screen UI tasks with exploring various UI
tasks by fine-tuning on GPT-generated data, and delving into UI tasks such as
screen summarization and widget interaction. MobileAgent [40] and AppAgent
[48] represent a different approach, utilizing MLLMs as agents for UI screen
navigation, with MobileAgent employing external detection modules for action
generation and AppAgent leveraging overlaid UI element IDs and screen XML
files for predefined actions. CogAgent [18], built upon CogVLM [41], shifts the
focus towards using only screen images for complex UI navigation, eliminating
the need for UI-specific modules. These are some examples among other works
that utilize LLMs [11,16,23,54] and MLLMs [8,14,36,42,47,52] in the space.
Ferret: An interactive MLLM. In recent investigations, there has been a
growing focus on the convergence of models [7,24,34,46,49,51] and the tasks re-
lated to dense visual perception, where these models focus on more fine-grained
interactions. Ferret-UI is based on Ferret [46]. Ferret distinguishes itself from
other MLLMs by excelling in spatial referring and grounding within natural
images of diverse shapes and levels of detail. It stands out for its ability to inter-
pret and interact with regions or objects, whether they are specified as points,
boxes, or any free-form shapes. The model incorporates a unique hybrid repre-
sentation technique that transforms specified regions into a format suitable for
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Platform Resolution Train Test

Android 2560×1440 26,527 3,080

iPhone

1792×828 74,953 8,297
828×1792 4,225 461
2436×1125 5,420 635
1125×2436 87 17

(a) Number of screens by resolution.

Task iPhone Android

screen2words - 78k
widget captions - 109k
taperception - 14k

elementary tasks 40k×7 40k×7

advanced tasks 10k×4 10k×4

(b) Number of samples per training task.

Table 1: Mobile UI screen and training data statistics.

processing by the LLMs. Ferret utilized a sophisticated architecture comprising
a pre-trained visual encoder (CLIP-ViT-L/14) [35] and a decoder-only language
model (Vicuna [53]). At its core, a spatial-aware visual sampler is designed to
adeptly manage continuous features of region shapes in different sparsity levels.
We illustrate the overall architecture of Ferret/Ferret-UI in Fig. 2. These meticu-
lous design choices enable Ferret to interactively process user inputs and deliver
outputs with unparalleled accuracy and contextual relevance, highlighting its
practical application in specialized UI tasks.

Ferret-UI includes a broader range of referring tasks (e.g., OCR, icon recog-
nition, widget classification) and grounding tasks (e.g., find text/icon/widget,
widget listing), enhancing the model’s reasoning capabilities for advanced UI
interactions. Unlike previous MLLMs that require external detection modules
or screen view files, our Ferret-UI model is self-sufficient, leveraging embedded
knowledge acquired during training. This approach not only facilitates advanced
single-screen interactions but also paves the way for new applications, such as
improving accessibility. Our work aims to specialize in UI tasks, demonstrating
the potential of multimodal large language models (MLLMs) to revolutionize UI
understanding and interaction.

3 Dataset and Task Formulation

In this section, we detail the process of generating datasets for model training and
evaluation. Specifically, we describe the UI detection data collection process in
Section 3.1, and we outline how we create task-specific data from raw detections
in Section 3.2.

3.1 UI Data Collection

UI Screens. To build a model capable of perceiving and interacting with mobile
screens, it is crucial to gather a varied collection of such screens. This study
examines screens from both iPhone and Android devices.

For Android screens, we use a subset of the RICO dataset [10]. Specifically,
we consider the tasks in Spotlight [27], whose data is publicly available, including
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Fig. 3: Elementary task data generation overview. A UI detection model outputs
all detected elements, with each element’s type, text, and bounding boxes. These detec-
tions are used to create training samples for elementary tasks. For grounding tasks, we
use all element detections to create one sample for widget listing whereas the remaining
tasks focus on one element at a time. We separate the elements into icons, text, and
non-icon/text widgets. For each type, we create one referring sample and one grounding
sample.

screen2words, widgetcaptions, and taperception. We aggregate unique images for
each split (train and test) among the tasks to form our own data splits. In total,
there are 26,527 train images and 3,080 test images.

For iPhone screens, we use the AMP dataset [50], which spans a broad spec-
trum of applications. A subset is randomly selected and divided into training
and test splits. The iPhone screens come in various sizes, resulting in a total of
84,685 training images and 9,410 test images. The breakdown of image sizes is
summarized in Tab. 1a.

UI Screen Elements Annotation. After collecting Android and iPhone screens,
we further collect fine-grained element annotation from screens using a pre-
trained pixel-based UI detection model [50]. For each detected UI element, the
output includes a UI type (Button, Text, Icon, Picture, etc.), the corresponding
bounding box, and the text displayed on it, if any, identified by the Apple Vision
Framework1. We further use heuristics from Screen Recognition [50] to group in-
dividual detections into larger units, e.g., multiple lines of text are merged into
one group, an image is grouped with its caption, etc.

1 https://developer.apple.com/documentation/vision
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Fig. 4: Advanced task data generation overview. We first normalize bounding
box coordinates from the detection outputs, then we send the detections, prompts, and
optional one-shot example to GPT-4. For detailed description and function inference,
we pair the generated response with a pre-selection of prompts to train Ferret-UI. For
conversation tasks, we directly transform GPT-4 output to multi-turn conversations.

3.2 Task Formulation

This section describes how we convert the UI screens along with the associated
detection data to a format that can be used to train an MLLM. We elaborate
on three distinct approaches devised for the construction of the dataset.
Reformatting Spotlight. We first take screen2words, widgetcaptions, and ta-
perception from the existing Spotlight tasks [27], and format them into conver-
sational QA pairs. Specifically, GPT-3.5 Turbo is used to create a varied set of
prompts from base prompts we author for respective tasks:

– Screen2words: Provide a summary of this screenshot,
– Widget Captions: For the interactive element [bbox], provide a phrase that

best describes its functionality,
– Taperception: Predict whether the UI element [bbox] is tappable.

For each training example, we sample a prompt for the corresponding task, and
pair it with the original source image and ground truth answer.
Elementary Tasks. In addition to the Spotlight tasks, we use paired screens
and UI elements mentioned in Section 3.1 to generate data for novel UI tasks
that rely on grounding and referring capabilities. We introduce 7 tasks using this
approach, one set for each of Android and iPhone screens: OCR, icon recognition,
and widget classification for referring ; and widget listing, find text, find icon, and
find widget for grounding. We define referring tasks as the ones with bounding
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boxes in the inputs, while grounding tasks are the ones with bounding boxes in
the outputs.

For each task, we also use GPT-3.5 Turbo to expand a base prompt to in-
troduce variants of the task question. Details for data generation are illustrated
in Fig. 3. The number of training samples for each task is summarized in Tab.
1b. The number of test samples for all tasks are 5k. In experiments, we sample
from this pool of training data with different ratios to construct our training
data mixture.

Advanced Tasks. To incorporate reasoning abilities into our model, we follow
LLaVA [31], and additionally collect data of 4 more formats using GPT-4. We
focus on iPhone screens for this part of the data collection, filtering our examples
to those with more than 2 but fewer than 15 detections. These examples are sent
together with prompts to GPT-4 to create data of the desired format—the actual
images are not used. Fig. 4 illustrates the training data generation process for
advanced tasks.

The four tasks are detailed description, conversation perception, conversation
interaction, and function inference. Among these, we expand base prompts for
detailed description and function inference to pair them with the GPT-4 response
as the input data in our model training. For conversations, we provide an in-
context example for GPT-4 to better follow bounding box formats in its output.
From the raw GPT-4 output, we parse the bounding boxes and transform them
into the correct multi-turn conversation format for our model. In total, we have
created 40K valid conversations from GPT-4 generated data. More details about
our data collection pipeline, and detailed analysis on our collected data are
provided in the Appendix.

While our training data collection primarily targets iPhone screens, we as-
semble test sets for both iPhone and Android platforms. For each task, we select
25 test screens from iPhone and 5 from Android. Due to overlaps in images
across different tasks, the total number of unique images amounts to 56 for
iPhone and 13 for Android. For evaluation, we randomly select 2 QA pairs for
the conversational tasks, creating two distinct test instances with precisely one
question in each input. Utilizing these test images, we formulate 20/40/38/20
questions iPhone and 5/10/10/10 questions for the Android sets, for the four
tasks respectively.

4 Experiments

Model Training. During training, both the decoder and the projection layer
are updated while the vision encoder is kept frozen. All the training data is
formatted into the instruction-following format, and the training objective is
the same as in Ferret. In total, our training mixture has 250K samples. It takes
26 hours to train on 8 A100 GPUs.



Ferret-UI: Grounded Mobile UI Understanding with Multimodal LLMs 9

Public Benchmark Elementary Tasks Advanced Tasks

S2W WiC TaP Ref-i Ref-A Grd-i Grd-A iPhone Android

Spotlight [27] 106.7 141.8 88.4 - - - - - -
Ferret [46] 17.6 1.2 46.2 13.3 13.9 8.6 12.9 20.0 20.7
Ferret-UI 113.4 142.0 78.4 80.5 82.4 79.4 83.5 73.4 80.5

GPT-4V [1] 34.8 23.5 47.6 61.3 37.7 70.3 4.7 114.3 128.2

Table 2: Results of Ferret-UI and baseline models. S2W : screen2words, WiC : widget
captions, TaP : taperception. We report the CIDEr score for S2W and WiC and F1
for TaP. For elementary and advanced tasks, we report the averaged performance of
corresponding tasks. “i”: iPhone, “A”: Android, “Ref”: Referring, “Grd”: Grounding.

4.1 Results

We compare the performance of Ferret-UI, Ferret2, and GPT-4V for all tasks.
We also include Fuyu [5] and CogAgent’s [18] performances on advanced tasks.3
Results are summarized in Tab. 2, where the average performance within a cat-
egory is reported. Performance breakdown for elementary and advanced tasks is
shown in Fig. 5a and Tab. 5b, respectively.
Public Benchmark from Spotlight [27]. Compared to Spotlight, Ferret-UI
demonstrates superior performance in S2W and WiC, even though Spotlight
uses 80 million web page screenshots and 2.69 million mobile screenshots for
pre-training. Ferret-UI performance falls short on TaP but still competitive; our
studies further suggests that this could be due to the noisiness of the taperception
labels. Detailed analysis is provided in the Appendix.
Results on Elementary UI Tasks. The average performance of all referring
and grounding tasks is summarized in Tab. 2, and the performance breakdown
for each task is shown in Fig. 5a. For referring tasks, we report exact match
accuracy for OCR and accuracy for icon recognition and widget classification.
For each grounding task, we also report the accuracy, where a correct bounding
box is one that has an Intersection over Union (IoU) with the label greater than
the threshold (0.5). Widget listing performances are not included in the average
as we treat it as an auxiliary task.

Ferret-UI outperforms Ferret and GPT-4V in most elementary tasks except
for iPhone OCR and find text, as GPT-4V is likely to be exposed to more text
data. While GPT-4V demonstrates decent performance on iPhone tasks, its per-
formances on Android tasks, especially grounding tasks, are significantly worse.
Examining the predictions shows that Android screens have more numerous and
smaller widgets, making the grounding tasks more challenging. Furthermore,
2 For Ferret, we include the pre-defined classes for icon classification and widget clas-

sification in the prompts while the remaining prompts are the same as Ferret-UI.
3 For GPT-4V, we sample a random subset of 100 instances for the Spotlight and

elementary tasks for cost efficiency. For GPT-4V evaluation, we follow [43] by over-
laying indexed bounding boxes of UI elements as visual prompts. Consequently, in
grounding tasks, GPT-4V is enabled to make selections from among these candidate
boxes. We detail the effort in Appendix.



10 K. You et al.

(a) Elementary task performance comparison.

iPhone Android

DetDes ConvP ConvI FuncIn Avg DetDes ConvP ConvI FuncIn Avg

Ferret [46] 2.5 34.7 23.7 19.1 20.0 2.0 33.9 24.9 21.9 20.7
Fuyu [5] 5.0 24.6 18.8 35.7 21.0 2.0 20.8 44.5 36.1 25.9
CogAgent [18] 53.1 59.7 74.8 71.9 64.9 28.0 58.5 90.1 90.5 66.8
Ferret-UI 64.5 75.0 77.5 76.5 73.4 90.8 72.8 79.3 79.2 80.5

GPT-4V [1] 66.8 105.6 198.5 86.3 114.3 126.6 109.4 188.6 88.3 128.2

(b) Advanced task performance comparison.

Fig. 5: Task performance breakdown. DetDes: detailed description, ConvP : conversa-
tion perception, ConvI : conversation interaction, FuncIn: function inference. Numerous
small widgets present on the Android screen make it more challenging for referring and
grounding, while Ferret-UI continues to outperform other models in the majority of
elementary tasks and maintains parity with GPT-4V.

Ferret-UI’s zero-shot performance on the Referring Expression Comprehension
task from UIBert [4] is 76% when we frame it as the find widget task.
Results on Advanced Tasks. The breakdown of task performance for ad-
vanced tasks is shown in Tab. 5b. As the advanced tasks require open-ended
responses, we use GPT-4 to score both the label and the prediction. We report
score for prediction over score for label as a percentage.

Ferret-UI exhibits commendable performance on advanced tasks for both
platforms, despite the absence of Android-specific data in its training dataset.
This suggests a notable transferability of UI knowledge across different oper-
ating systems, with Ferret-UI outperforming the average. While Fuyu tends to
generate answers that are generally relevant, its responses lack the detail and pre-
cision exhibited by Ferret-UI. Conversely, GPT-4V secures higher scores across
all tasks by consistently delivering more detailed responses than Ferret-UI, a
characteristic that aligns with the preferences of the model evaluator (GPT-4).

4.2 Ablation Studies

Advanced Tasks. The design motivation behind elementary tasks is to en-
hance the model’s visual and spatial understanding of basic UI elements. Our
hypothesis is that this enhanced understanding can help with carrying out ad-
vanced tasks. We investigate this hypothesis by studying whether elementary
tasks affect the model’s performances on advanced tasks and we present the re-
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iPhone Android

Adv. task only 64.6 64.3
+ iPhone elem. 70.3 68.6
+ Android elem. 70.2 75.3
+ both as in 2 73.4 80.5

(a) Advanced Tasks Ablation. Perfor-
mance on iPhone and Android advanced
tasks. The training configurations are mix-
ing advanced task with no other data, with
iPhone elementary tasks only, Android ele-
mentary tasks only, or both.

S2W WiC TaP

Spotlight [27] 106.7 141.8 88.4

Balanced TaP labels 111.7 133.8 76.5
Spotlight tasks only 111.3 138.7 77.6
+ Android elem. tasks 111.3 138.0 76.8
+ iPhone elem. tasks 112.4 138.9 74.8
+ both 111.3 138.7 76.0
Full mixture from 2 113.4 142.0 78.4

(b) Spotlight Tasks Ablation. Perfor-
mance on S2W, WiC, TaP tasks. For the bal-
anced TaP labels experiment, we up-sample
the minority class.

Table 3: Ablation studies on the factors that impact (a) advanced tasks performance
and (b) Spotlight tasks performance, respectively.

sults in Tab. 3a. We see that with only advanced task data, the performance is
64% for both platforms. The performance of advanced tasks on iPhone shows
a consistent improvement of 5% with the addition of either iPhone or Android
elementary tasks. Conversely, when adding iPhone elementary tasks, Android
advanced task performance improves by approximately 4%, while the addition
of Android elementary tasks leads to a 9% improvement. With both sets of ele-
mentary tasks, iPhone and Android advanced tasks see a further improvement
of 3% and 5% respectively above the best single set added. These observations
support our hypothesis that elementary tasks provide the model with enhanced
visual and spatial understanding that facilitates advanced tasks.
Spotlight Tasks. Motivated by a desire to explore the impact of different data
cofigurations on Spotlight task performance, we specifically investigate whether
adding elementary tasks data could enhance the model performance, given that
these tasks are designed to improve the visual and spatial comprehension of
screens. As shown in Tab. 3b, the addition of elementary task data—whether
exclusively from Android, iPhone, or a combination of both—does not signifi-
cantly alter performance across the three Spotlight tasks. This may be attributed
to the short and highly specialized UI-centric vocabulary used in responses to
elementary tasks, contrasting with the response style demanded by Spotlight
tasks. Optimal results for Spotlight tasks were observed when data from ad-
vanced tasks were integrated alongside all elementary tasks, even though the
advanced task data was exclusively derived from iPhone screens. Notably, this
configuration yields a 4-point CiDER score improvement in widget captions
upon the addition of advanced task data. We postulate that the free-response
format of advanced task answers, which necessitates a more sophisticated set of
skills for execution, aligns more closely with the requirements of Spotlight tasks.
These tasks demand a comprehensive understanding beyond that of recognizing
individual UI elements, as is common in elementary tasks. Moreover, executing
advanced tasks requires more sophisticated skills than understanding one spe-
cific UI element on the screen as in elementary tasks. Therefore, it is expected
that these skills help with Spotlight tasks, which are more complex than ele-
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Fig. 6: OCR Analyses. Left : predict nearby text instead of targeted region. Middle:
a tendency to predict valid words. Right : Ferret-UI correctly reads cut-off text, while
detection model produces wrong label.

mentary tasks but less convoluted than advanced tasks. In conclusion, the task
formulation plays a bigger role than the platform of the data that is added.

4.3 Result Analysis: Elementary UI Tasks

Referring Tasks Analyses. In analyzing Ferret-UI’s capabilities, we specif-
ically focus on OCR predictions. The OCR analysis reveals three notable ob-
servations, as depicted in Fig. 6. Firstly, the model predicts a neighboring text
instead of the text in the targeted region. This is common for smaller texts and
texts very close to other texts. Secondly, the model exhibits a tendency to predict
actual words rather than merely deciphering characters displayed on the screen.
This observation is in line with the semantic-reliance observation of LLMs made
in some existing work [32]. On UI screens, phonetically crafted words that are
commonly used as brand titles largely fall under this category. Thirdly, Ferret-UI
demonstrates the ability to accurately predict text that is partially cut-off, even
in instances where the OCR model returns incorrect texts.

Grounding Tasks Analyses. Using find text predictions, as depicted in Fig.
7, we further elucidate observations from grounding tasks. Echoing the initial
observation from the OCR analysis, the model may erroneously highlight a piece
of text adjacent to the targeted area. Additionally, the occurrence of multiple
instances of identical texts suggests the potential for expanding future methods
to encompass a range of answers from a singular box to multiple boxes, thereby
enhancing the model’s utility and accuracy in complex text-finding scenarios.
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Fig. 7: Find Text Analyses. Left : a neighboring text is mis-identified as the target.
Middle: multiple occurrences of the same text. Right : predicted boxes not precise.

4.4 Result Analysis: Advanced UI Tasks

Grounded conversation. Engaging in grounded conversation is Ferret’s unique
capability. To better understand the quality of the output bounding boxes in
terms of correctness and relevance, we manually grade all output boxes in both
Ferret-UI and GPT-4V’s converation interaction outputs. The accuracies for
Ferret-UI and GPT-4V are 91.7% and 93.4% respectively. Considering Ferret-UI
is generating raw coordinates whereas GPT-4V chooses from a set of pre-defined
boxes, Ferret-UI’s grounding ability on UI screens is noteworthy. Even though
Ferret-UI’s received evaluation score falls short to GPT-4V, from inspecting
the predictions as in Fig. 8, we notice that GPT-4V tends to provide extra
information that may not be relevant to the question. However, these detailed
answers are more favored in scoring than Ferret-UI’s concise answers.

UI detection model is a bottleneck. Given that both our elementary and
advanced tasks are predicated upon detections of UI elements, Ferret-UI is not
able to learn aspects of screens that are not detected, such as colors, design,
usability, and UI elements that the detection model misses (eg, topmost time,
wifi, battery, etc). For example, in generating detailed descriptions, GPT-4V
is capable of noting “The overall design conforms to Apple’s aesthetic with a
minimalistic, clean, dark theme.” a level of insight Ferret-UI is not trained to
offer due to its reliance on detected elements alone.

Set-of-Mark (SoM) Prompting of GPT-4V. In our evaluation of GPT-4V,
we employ the Set-of-Mark (SoM) prompting technique, which encounters several
notable limitations. Firstly, its effectiveness diminishes in scenarios involving a
multitude of small UI elements, a common occurrence in Android detection tasks.
The small size of some UI components means that the addition of labels may
obscure original content or even extend beyond the intended areas. Secondly,
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constraining the evaluation to a pre-defined set of candidate regions restricts the
model’s ability to reference any given region freely. In the middle example shown
in Fig. 8, the UI detection model treats the entire middle section as one element,
covering the texts, image, and the Buy button. Therefore, the model is not able
to refer to the "BUY" button on its own in its responses, since it is considered
part of a collective detection group.

5 Conclusion

In summary, we introduce Ferret-UI, a specialized MLLM designed to enhance
comprehension and interaction with mobile UI screens. Through careful curation
of training samples encompassing a diverse range of basic and advanced UI
tasks, Ferret-UI demonstrates remarkable proficiency in referring, grounding,
and reasoning. The advent of these enhanced capabilities promises substantial
advancements for a multitude of downstream UI applications, thereby amplifying
the potential benefits afforded by Ferret-UI in this domain.
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Fig. 8: Visualization results of advanced tasks (top to bottom: function inference,
conversation interaction, conversation perception) to illustrate the differences among
various models (Fuyu v.s. CogAgent v.s. GPT-4V v.s. Ferret-UI.)
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A Elementary Task Data Generation Details

Additional details in elementary task data generation are as follows:

– In our data generation process, we merge the two distinct classes—‘Checked’
and ‘Unchecked’—found in the original detection labels for both Checkboxes
and Toggles.

– For widget listing, the answer starts with a common phrase: UI widgets
present in this screen include. Each element is formatted as “{displayed text}
{UI type}” (e.g., “login button”), except for text elements, which are format-
ted as “Text displaying {displayed text}”.

– For OCR, we consider text with fewer than 10 tokens. If the text is exactly
one token, the length needs be to 2 or greater to be included.

– For tasks such as find text, find icons, and find widget, it is common to en-
counter screens containing multiple instances of the same UI element (e.g.,
multiple login buttons). We employ a filtering mechanism that excludes sam-
ples involving UI elements with multiple occurrences within a single screen.

– The size of the test set is determined by selecting the smaller value between
5k and the total number of generated test instances.

B Advanced Task Data Quality Analysis

We conduct a thorough analysis of the quality of our collected data for advanced
tasks and provide comprehensive statistics. The vocabulary size for each task is
as follows: 30,866 for detailed description, 15,666 for conversation perception,
12,092 for conversation interaction, and 14,896 for function inference.

In the realm of conversation interaction, we observe 33,649 question turns
and 29,933 answer turns. Among these, 15 question turns include bounding
boxes, whereas all answer turns include bounding boxes. We compile the most
frequently occurring tri-grams for questions and answers in both conversation
tasks. Notably, in conversation perception questions, the top tri-grams include
phrases like are there any”, where is the”, and what is the”, while those for inter-
actions comprise phrases like How can I”, I want to”, and Can I do”. Similarly,
in perception answers, prominent tri-grams consist of expressions such as bottom
of the”, at the top”, and there is a”, while interaction answers primarily feature
tri-grams like by tapping on”, tapping on the”, and can tap on”.

We present detailed distributions of tri-grams in conversation data questions
and answers in Fig. 9. This observation is consistent with our intended objec-
tives for each conversation category, with perception focusing on visual elements
and interaction emphasizing actions. Notably, from the interaction conversation
answers, we observe that tap emerges as the predominant action. In future work,
we aim to explore interactions involving other actions, such as scrolling, long-
clicking, and entering text. The inclusion of two conversation categories aims to
diversify conversation topics, although a clear-cut distinction between the two is
not always feasible, and overlap between the categories may occur.
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(a) Conversation perception questions trigrams
distribution.

(b) Conversation perception answers trigrams
distribution.

(c) Conversation interaction questions tri-
grams distribution.

(d) Conversation interaction answers trigrams
distribution.

Fig. 9: Trigrams for collected conversation data questions and answers.

C Taperception label analysis

We meticulously label 30 test samples for taperception and conduct a study
on the correlation among our labels, taperception ground-truth labels, Ferret-
UI outputs, and GPT-4V outputs. Among the 30 samples, 5 pose challenges in
deciphering without direct interaction with the screen.
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In Tab. 10, we present the percentage of agreement among different sources
of predictions and labels. The term "filtered" denotes the set of 25 instances
that are unambiguous, while "unfiltered" encompasses the entire 30 instances.
We observe that our labels exhibit a high correlation with GPT-4V predictions,
but differing significantly from the taperception dataset labels. This discrepancy
underscores the complexity of predicting tappability solely based on single im-
ages, highlighting the inherent challenges in obtaining clear-cut labels for this
task.

(a) Filtered. (b) Unfiltered.

Fig. 10: Agreement between different sources of taperception predictions and labels.
In unfiltered, we make the best educational guess for the one that are ambiguous. We
observe that our human annotation correlate with GPT-4V (%76) far more than with
taperception label (%8). Even though Ferret-UI’ performance on taperception falls
behind compared to Spotlight, it could be due to the noisiness of labels.

D Advanced Task Generation Prompts

We present the prompts that we use to collect advanced task data from GPT-4
in Fig. D.

E GPT-4V Evaluation Details

We detail the process of creating input for GPT-4V to tackle the UI tasks under
scope.

[Input Images] We first annotate the screenshots tailored to each specific task,
ensuring that GPT-4V has sufficient contextual information to answer the ques-
tions. For tasks without any bounding boxes in input or output (screen2words,
widget captions, and Advanced Tasks), we use the original images as the input.
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Fig. 11: Prompts for GPT-4 in advanced task data generation.

For tasks that refer to one specific UI element using bounding box in the input,
we put a magenta-colored bounding box on the image as the input, as shown in
Fig. 12 left. For tasks that expect one or more bounding boxes in the output, our
initial explorations confirm that GPT-4V is not able to provide bounding boxes
in the output as it gives the answer, "Unfortunately, I’m not able to provide the
exact bounding box coordinates, as my capabilities are currently limited to de-
scribing images and discussing the content rather than interacting directly with
the image to extract detailed metadata such as pixel coordinates.") and proceed
to answer the question in natural language. Therefore, for those tasks, we create
an easier version where we ask GPT-4V to choose from a fixed set of candidates.
Particularly, we follow Set-of-Mark prompting [43] where for each UI detection
from our UI detection model, we use a magenta-colored bounding box to mark
it in the screen and inside each box we assign a numeric label so that GPT4-V
can refer to it. An example input image is shown in Fig. 12 right.

[Prompts] With the input images ready, we further modify the prompts to pro-
vide GPT-4V with all the necessary information to perform all the tasks suc-
cessfully. For taperception, we instruct it to answer ‘Yes.’ or ‘No.’ only without
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Fig. 12: GPT-4V input image examples. Left: used in referring task, where the question
concerns on specific UI element. Right: used in grounding task, where GPT-4V refers
to the UI elements by their assigned numeric labels.

any explanations. For widget captions, we instruct it to ‘Answer in a few words.’
For icon recognition and widget classification, we provide the list of all possible
classes, and instruct it to output the class only without any explanations. For
OCR, we instruct it to output the identified text only. For find widget, find text,
find icons, we add to the prompt “Candidate choices are indicated using ma-
genta bounding boxes in the image and each box is associated with a numeric
label. Output the numeric label as your answer, no need to explain."

F Widget Classification Analysis

Similar to OCR analysis, we show three interesting observations in Fig 13. First,
the model struggles when it needs to understand relationships among widgets.
For example, if a large button is made up of a few sub-elements including Picture,
Icon, and text, the model cannot see it as a unified widget but tend to predict
it as the sub-element that occupies the largest space. In line of first observation,
when a Tab or an Icon is seated on top of a row of tabs, it is highly likely be
considered part of the tabs. Finally, we discover a common case where small
Icons surrounded by texts are likely to be predicted as Text, this is consistent
with the observation that small texts tend to be predicted as neighboring texts.
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Fig. 13: Widget Classification Analyses. Left : a large Button consists of Picture,
Icon, and Text mis-classified as a Picture. Middle: a button seated on top of a row of
Tabs mis-classified as a Tab. Right : a small, text-surrounded icon being classified as
text.

G More Example Outputs
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