
Automated Code Fix Suggestions for
Accessibility Issues in Mobile Apps

Forough Mehralian
Apple

Seattle, USA
mehralian@apple.com

Titus Barik
Apple

Seattle, USA
tbarik@apple.com

Jeff Nichols
Apple

Seattle, USA
jwnichols@apple.com

Amanda Swearngin
Apple

Seattle, USA
aswearngin@apple.com

Abstract—Accessibility is crucial for inclusive app
usability, yet developers often struggle to identify and
fix app accessibility issues due to a lack of awareness,
expertise, and inadequate tools. Current accessibility
testing tools can identify accessibility issues but may
not always provide guidance on how to address them.
We introduce FixAlly, an automated tool designed
to suggest source code fixes for accessibility issues
detected by automated accessibility scanners. FixAlly
employs a multi-agent LLM architecture to generate fix
strategies, localize issues within the source code, and
propose code modification suggestions to fix the acces-
sibility issue. Our empirical study demonstrates Fix-
Ally’s capability in suggesting fixes that resolve issues
found by accessibility scanners—with an effectiveness
of 77% in generating plausible fix suggestions—and our
survey of 12 iOS developers finds they would be willing
to accept 69.4% of evaluated fix suggestions.

Index Terms—accessibility, automated, repair, mo-
bile, llm

I. Introduction
The increasing reliance on mobile apps for everyday

tasks underscores the necessity of ensuring accessibility
for all. Despite the existence of guidelines aimed at as-
sisting developers in creating more accessible apps [1]–
[3], research shows that many apps are still released
with numerous accessibility issues [4]–[7]. Developers often
struggle with building accessible apps because they lack
awareness of accessibility requirements [4] or have limited
knowledge and expertise in effectively addressing accessi-
bility issues [8].

Existing accessibility scanning tools—such as Accessibil-
ity Scanner [9] for Android and Accessibility Inspector [10]
for iOS—helpfully verify compliance of each app screen
with rules derived from accessibility guidelines. In addition
to these rule-based techniques, some automated tools dy-
namically examine apps using assistive technologies to de-
tect issues that manifest during real-time interactions [11],
[12]. However, current tools provide insufficient support
for maintaining app accessibility [8] because fixing the
large number of issues reported by these tools remains
a significant challenge. While single-issue fix techniques
address problems like color issues [13], missing labels [14],
text scaling problems [15], and touch target size [16],
these single-issue fix techniques have notable limitations.

According to documentation, Accessibility Inspector re-
ports 7 categories of issues [10], and these single-purpose
approaches can fix only a small subset.

To bridge this gap in tooling between single-purpose fix
approaches and source code, we investigate an automated
plan-localize-fix technique—implemented as a tool called
FixAlly—to fix various types of accessibility issues re-
ported by scanners such as the Accessibility Inspector [10].
To understand the challenges of fixing issues detected by
accessibility scanners in source code, we first conducted
formative interviews with five developers. Our develop-
ers indicated that: 1) multiple strategies can address a
single issue, 2) appropriate fixes must consider not only
accessibility guidelines, but also the integrity of the app’s
design and functionality, 3) implementing a fix frequently
requires modifications beyond the problematic element,
and 4) identifying these relevant locations in the code to
apply fixes is the most time-consuming step.

To address these needs, FixAlly employs a multi-
agent LLM architecture capable of proposing plausible fix
suggestions for issues reported by an accessibility scanner.
In this context, a plausible fix is defined as a modification
that passes the accessibility checks of the automated scan-
ner for the target issue without introducing new ones or
removing functionality. FixAlly analyzes an open-source
mobile app to detect various accessibility issues. FixAlly
localizes issues within the source code and proposes fix
suggestions to resolve the issue using a suggestion genera-
tion engine. Each proposed fix suggestion aims to resolve
the targeted accessibility issue without introducing new
ones or compromising app functionalities. FixAlly also
assists the developer in the decision-making process to
select the strategy that best aligns with the app’s design
and requirements.

The contributions of this paper are:
• A novel plan-localize-fix technique—operationalized

as an automated tool using a multi-agent LLM
architecture—that generates code suggestions to fix
accessibility issues in mobile apps.

• An empirical evaluation on 205 issues from 14 iOS
apps built using SwiftUI, a declarative framework
that allows developers to define the desired UI at-
tributes and behavior [17]. Our evaluation demon-

ar
X

iv
:2

40
8.

03
82

7v
1

 [
cs

.S
E

]
 7

 A
ug

 2
02

4

Internal use only–do not distribute.

struct ThemePicker: View {
 @Binding var selection: Theme

 var body: some View {
 Picker("Theme", selection: $selection) {
 ForEach(Theme.allCases) { theme in
 ThemeView(theme: theme)
 .tag(theme)
 }
 }
 .pickerStyle(.navigationLink)
 }
}

Fig. 1. Implementation of a dropdown list in SwiftUI.

struct ThemeView: View {
 let theme: Theme

 var body: some View {
 Text(theme.name)
 .padding(4)
 .frame(maxWidth: .infinity)
 .background(theme.mainColor)
 .foregroundColor(theme.accentColor)
 .clipShape(RoundedRectangle(cornerRadius: 4))
 }
}

Fig. 2. Localization of the color contrast issue in the source code.

strates an effectiveness of 77% of FixAlly in propos-
ing plausible fix suggestions for accessibility issues.

• A survey of 12 iOS app developers, finding the tool
was most helpful for less experienced developers in
allowing them to explore multiple solutions when
resolving accessibility bugs. Even experienced devel-
opers found it helpful that FixAlly localized the
issue in the code.

II. Background: Comparing Android and iOS
Many of the existing approaches focus on Android

applications which require different techniques than iOS
applications. Declarative programming languages, such as
SwiftUI, represent a contemporary paradigm for building
GUIs in mobile apps by enabling developers to define
the desired UI and its behavior using concise syntax.
Figure 1 illustrates how a dropdown list is implemented
in SwiftUI. This approach contrasts with traditional im-
perative methods, where developers must meticulously
specify attributes of each UI element and manage its state.
For example, in Android, the UI specification is defined
using an XML file, with Java classes binding behavior to
each element. Developers can also modify UI attributes
dynamically through specified behavior in declarative lan-
guages. Therefore, properly locating GUI problems in the
project cannot be effectively achieved through analysis or
modification of the static GUI specification alone. The
dynamic specification of UI attributes, which is the core of
declarative programming languages, introduces additional
challenges in identifying GUI problems, such as accessibil-
ity issues, within the source code.

Consider the color contrast failure issue for the an-
notated dropdown list in Figure 1, as reported by Ac-
cessibility Inspector. Developers typically employ various

strategies to address such issues, such as adjusting back-
ground colors, modifying text colors, or increasing font
sizes. However, these strategies cannot be applied in the
provided code snippet that demonstrates the element’s
implementation. Instead, the appropriate place to adjust
the color for this element is within the ThemeView called
from the ThemePicker (Figure 2). Locating this correct
position necessitates navigating through the UI hierarchy,
understanding the semantics of the GUI, and compre-
hending the structure of the source code required for
implementing these elements. This complexity has made
localization a challenging task.

III. Formative Study
To elicit the process developers follow to fix accessibility

bugs found by an accessibility scanner in iOS apps, we
conducted formative interviews with five iOS app devel-
opers in our company. The developers had at least 1 year
of experience in developing SwiftUI apps and median of
intermediate accessibility familiarity (1 – No Experience
to 5 – Expert). During the study, the developers used
the Accessibility Inspector and Xcode to detect issues in
the Landmarks app1 running on an iOS simulator. We
asked them to think-aloud while they detected and fixed
as many issues as they could within 1 hour. At the end,
we asked them follow-up questions about their experiences
and their ideas on any tools that could improve their
process in finding and fixing the accessibility issues. All
sessions took place virtually over Webex. Some developers
built and tested the app locally while sharing their screen
and some developers remotely controlled the screen of the
lead researcher who also had the app and simulator built
and running in Xcode. A second researcher observed and
took notes for four out of five sessions. We recorded audio,
video, and notes for each session.

To analyze the data, we annotated the transcripts and
built an affinity diagram [18] where one paper author led
the annotation and initial grouping, and another author
read and also validated the themes.

1) Accessibility Bug Fixing Phases: We examined the
developers’ overall process in fixing the accessibility bugs
with two goals: first, understanding the varied activities
(e.g., localizing an issue, fixing it in the code) within the
whole process, and second, understanding inefficiencies
within each of those activities where an automated tool
could help. We found that developers accessibility bug
fixing workflow can be grouped into the following phases:
hypothesis formation & fix planning, localization, and code
editing and validation. We ultimately designed the archi-
tecture of FixAlly around these three phases.

Hypothesis formation and fix planning: All developers in
our study had at least intermediate accessibility knowledge
and could understand the issues reported by Accessibility
Inspector. They were all able to propose hypotheses to

1https://github.com/pd95/SwiftUI-Landmarks

diagnose one or more issues, and come up with a high
level plan to fix one or more of them. In some cases,
developers directly proposed a fix plan for some issues
because they were already highly familiar with the issue
and could quickly come up with the fix. In other cases,
developers mentioned multiple hypotheses that the issue
could be related to, and validated which to test after
localizing the impacted UI element in the source code.

Localization: The output of Accessibility Inspector, and
typically other accessibility scanners, is a screenshot high-
lighting the impacted UI element and the ability to
highlight the element with the issue on a live device.
While these tools provide some metadata and inspectors
to examine the running app’s hierarchy, they provide
little help with localizing UI elements in code. In our
study, developers used a variety of methods to localize
UI elements in the code including searching for specific
text strings found in the interface. Others tried to match
the visual hierarchy in the interface with the hierarchy of
views in the source files by looking at them one by one.
Sometimes they also looked for specific SwiftUI modifiers
in the code based on their hypothesis, or examined the
view hierarchy in the accessibility inspector for class names
or metadata they could search for. Localization was where
they predominantly spent the most time during the study.

Code editing and validation: After fix planning and
localization, developers applied their fix to the code. They
then re-ran the Accessibility Inspector audit on the same
screen again to confirm the issue was resolved. If the issue
was not resolved, they could repeat the overall process as
long as time allowed.

Developers did not necessarily complete the bug fixing
phases in the same order. In all cases, developers either
localized or came up with a hypothesis or fix plan first.
Some developers first attempted to localize a UI element
in the source code before coming up with a hypothesis or
fix plan, while others first described a hypothesis or fix
plan before attempting to localize the UI element. Some
developers repeated this process multiple times before
confirming the fix by validating it no longer appeared in
the Accessibility Inspector.

2) Design Goals: At the closing of the session, we asked
the developers to describe their overall process for fixing
the accessibility issues, and to provide feedback on any
tools that could expedite their process. We then formu-
lated list of design goals that we incorporated into our
system. The design goals were motivated by the challenges
developers faced throughout the accessibility bux fixing
process and suggestions they provided to address these
challenges.

Design Goal 1 – Localize impacted UI elements in source,
and automatically apply fix suggestions: Developers strug-
gled the most during our interviews with finding impacted
UI elements in source code, which is often the starting
point for making a fix. This added tedious, and unneces-
sary friction to their bug fixing process. Developers utilized

different heuristics to localize the issue, including search-
ing for textual elements, mapping their mental model of
elements in the screenshots to the UI structure in the
code, looking for specific accessibility attributes they were
planning to modify, or combinations of these approaches.
Thus a key goal of FixAlly is to automatically localize
potential fix locations in code for detected issues to remove
this inefficiency and also generate fix suggestions in the
form of patches so they can be applied automatically.

Design Goal 2 – Provide multiple fix suggestions for an
issue: Some developers struggled to come up with hypoth-
esis for fixes, and even if they had a plausible hypothesis,
some did not know how to make the corresponding code
changes to test it. Furthermore, some issues often can be
fixed in multiple ways. For example, contrast issues can
be fixed by increasing text font size, or changing the color
of UI elements or background. Developers noted other
considerations and potential side effects in choosing a
correct fix including consulting with design teams, support
for other languages, and impact on the layout of other
areas of the screen or the application. Some developers
also struggled to understand some issues reported by
Accessibility Inspector, and requested better suggestions
more contextualized and specific to their code. To help
developers in understanding each suggested fix, FixAlly
also includes information about the model’s fix plan and
reasoning along with each generated fix suggestion.

IV. Approach
Figure 3 shows an overview of FixAlly, with its three

main modules: Data Processing, Suggestion Generation
Engine, and Suggestion Assessment.

FixAlly takes as input an app with GUI tests, each
designed to navigate to different screens of the app. The
XCTest framework [19], integrated into Xcode IDE, allows
iOS developers to create automated test scenarios that
navigate the app to the screens targeted for accessibility
assessment. Additionally, existing automated app crawlers
can help developers generate these test scenarios automat-
ically. These crawlers either perform random actions on
the screen [20] or analyze UI elements to systematically
explore all possible actions on those elements [21].

Automated testing frameworks recommend that devel-
opers use unique identifiers for each element, serving as
a bridge between testing frameworks and apps. To ensure
every UI element is associated with an identifier, the Data
Processing module statically analyzes the source code, re-
stores the UI hierarchy, and instruments the app to insert
a unique accessibility identifier for each UI element [22]
in the input SwiftUI app. To find accessibility issues,
the Data Processing module runs GUI tests to navigate
to varied screens in the app. It then uses Accessibility
Inspector [10] to obtain a report of accessibility issues on
an app screen navigated to by a GUI test. The output
of the scanner includes a description of each issue, the
identifier of the impacted UI element or its parent elements

Fig. 3. FixAlly’s approach, consisting of 1) Data Processing which instruments the application and navigates to various screens via GUI
tests to capture accessibility scans and screenshots, 2) Suggestion Generation which uses a multi-agent LLM architecture to generate fix
suggestions for each detected issue from the input screenshot, source code, and issue descriptions, and 3) Suggestion Assessment which
captures a new accessibility scan of the patched app and GUI screen and compares it to the prior report to determine if the fix suggestion
resolved the issue.

in the UI hierarchy, and a screenshot of the app with
the location of the problematic element. The Suggestion
Generation Engine processes the information for each issue
to generate multiple fix suggestions for addressing the
issue, and patched project to verify whether suggestions
resolve the issue (Details in Section V). Inspired by Design
Goal 1, the Suggestion Generation Engine is capable of
localizing the source of issues among the code for an
app across multiple files, and generating patches that
developers can automatically apply to fix the issue.

To verify that generated fix suggestions can plausibly
fix each issue, FixAlly evaluates each code modification
in its Suggestion Assessment module. This module takes
the modified code snippet to generate a patched version of
the project, attempts to build the app, and runs the same
GUI test to navigate to the target screen where the issue
was detected. It then uses the Accessibility Inspector to
audit the screen and compare the report with the initial
report.

Suggestion Generation Engine fails when the generated
fix has build errors, was not able to resolve the accessibility
issue, or introduced new issues. The model may also
inadvertently comment out sections of code or remove
necessary screen elements. FixAlly feeds these failure
messages back to the Suggestion Generation Engine to
self-reflect and let it revise the modified code snippet.
This iterative process mirrors a developer’s approach of
assessing and revising modifications in response to issues.
In our work, we configure the number of iterations for
this feedback loop, setting it to 3 to allow sufficient
opportunities for the model to refine its fix suggestions.
Finally, if the fix suggestion successfully resolves the issue
without introducing other issues or removing functional-
ities, the Suggestion Assessment module marks it as a
fix suggestion that can be shown to developers. FixAlly
provides developers with multiple fix suggestions for an
issue inspired by Design Goal 2.

Static Analysis:
Parent and Descendants

 in UI hierarchy

All View files in the project

LLM-based Rating:
Highly matched

Views

LLM-based
Comparison

A11y Issue
Modification Plan

UI hierarchical Structure

Most likely
code snippet

Fig. 4. Multi-level, hybrid localization architecture: Static analysis
of the UI hierarchy identifies parent and descendant views. LLM-
based rating evaluates the match of each individual code snippet to
the screenshot. Finally, LLM-based comparison examines the highly
matched views to determine the most likely code snippet for applying
the fix.

V. Suggestion Generation Engine
The Suggestion Generation Engine (Figure 3.2) is sug-

gests fix strategies for each reported accessibility issue.
Figure 1 shows the Suggestion Generation Engine, illus-
trating three agents in this module: Planner, Localizer,
Fixer. These agents are responsible for performing specific
steps that developers take in fixing an accessibility bug,
as we observed in our Formative Study (Section III).
The details of each agent are below. For each agent,

 var body: some View {
 ScrollView {
Button(action: {
 // Empty action to make it interactive
}) {
 VStack(alignment: .leading, spacing: 10) {
 // The rest of elements
 }
 .padding()
 .frame(minWidth: 44, minHeight: 44)
}
.buttonStyle(PlainButtonStyle())
 }
 }

Issue: Hit Area is too small  
plan: Wrap the interactive element with a larger container.

.toolbar {
 ToolbarItem(placement: .cancellationAction) {
 Button(action: {
 isPresentingNewScrumView = false
 }) {
 Text("Dismiss")
 .font(.system(size: 18)) // Modified font size
 }
 }
 ToolbarItem(placement: .confirmationAction) {
 Button(action: {
 scrums.append(newScrum)
 isPresentingNewScrumView = false
 }) {
 Text("Add")
 .font(.system(size: 18))
 // Optional: Ensure consistency in font size
 }

Issue: Contrast nearly passed 
plan: Increase font size of Dismiss button

Issue: Text Clipped

Text("Seasonal Photos:\(seasonalPhoto.raw)")
HStack {
 Text("Seasonal Photos:")
 Spacer()
 Text(profile.seasonalPhoto.rawValue)
}
.accessibilityElement(children: .combine)

(a) (b) (c)

Text("Seasonal Photos:\(seasonalPhoto.raw)")
 .lineLimit(nil) // Allow unlimited lines
 .multilineTextAlignment(.leading)
 // Ensure text wraps correctly

Text("Seasonal Photos:\(seasonalPhoto.raw)")
 .padding(.vertical, 20)
 // Increased padding to increase height

Plan2: Enable word wrapping and hyphenation.

Plan3: Increase row heights

Plan1: Use a flexible stackable layouts

Fig. 5. Three different types of issues that were fixed by FixAlly. (a) The tool addresses the issue of small hit target size by identifying a
group of semantically related elements and merging them into an interactive container. (b) Shows three generated fix suggestions for Text
Clipped issue. The first plan involves replacing a single element with a group of elements while preserving the functionality(c) FixAlly
addresses the contrast issue of the “Dismiss” button, while also maintaining design integrity by applying the font change to another similar
button.

we currently use GPT-4o [23] for the LLM model. The
specifics of the prompt, along with the source code, are
available in the supplementary material submitted with
the paper.

A. Planner: Suggesting fix plans

Each accessibility issue may be resolved in various ways.
According to our Formative Study III, developers prefer
solutions that not only fix the issue without introducing
new issues, but also align with the design decisions of the
app and work well in different modes, such as dark mode
or horizontal mode. Providing different options for fixing
an issue allows the developer to choose the one that best
fits the overall design and functionality. The Planner agent
facilitates this by generating natural language suggestions
of strategies to fix each issue. For example, agent may
suggest a plan of “adjust background color for better
contrast” to fix a “contrast failed” issue for a UI element.

FixAlly provides the Planner agent with an annotated
screenshot of the app along with the issue description from
the Accessibility Inspector. Its task is to identify the most
relevant accessibility guideline related to the reported
issue and list techniques to resolve it in natural language.
FixAlly aims to leverage the language model’s knowledge
of accessibility fixes across various platforms, such as the
web, to provide suggestions that can be adapted for mobile
apps on specific platforms like iOS. FixAlly instructs the
agent to avoid suggesting solutions that are not applicable
to the source code, filtering out recommendations such as
using third-party tools to test the app. In our evaluation,
FixAlly instructs the Planner to return three alternative
plans for each issue, though this number can be configured.

B. Localizer: Finding the relevant code snippet

Localizing an issue involves identifying the precise lo-
cation in the source code where the fix plan should be
applied. Source code projects often span numerous files
with thousands of lines, potentially exceeding the token
limits that language models can effectively query in one
request or retain in their context window. To manage this
complexity, we employ a multi-level localization approach
using static code analysis and LLM code analysis. Figure 4
illustrates the different levels of localization, including one
static code analysis step and two LLM-based steps for
issue-to-code mapping.

First, the Localizer identifies all of the View files of the
project, identifiable by the ‘import SwiftUI’ statement
and structures extending the View class. Then, it extracts
candidate code snippets from these view files through
static code analysis. The key insight that the Localizer
uses to optimize this process is that the behavior and de-
sign of UI elements are predominantly influenced by their
descendants or ascendants. The Static Analysis module
takes the accessibility identifier of the problematic element
and traverses the pre-analyzed UI structure to return all
descendant views and the parent of that element to form
a set of candidate code snippets. FixAlly adds these
accessibility identifiers to each view in the code in the Data
Processing phase, where it also captures the UI hierarchy
(Recall Section IV).

Next, the Localizer generates an LLM-based rating for
the code snippets filtered by the static analysis module. It
matches each snippet to the modification plan for the issue
and the screenshot highlighting the problem. Due to the
limited context window of LLMs, it may not be feasible
to consider and compare all candidate snippets simulta-

neously to find the correct one to apply the fix. Instead,
the Localizer agent first assesses each snippet individually
based on detailed issue information, the screenshot, and
the proposed fix plan to determine its suitability. FixAlly
instructs the agent to map the problematic element and
other elements in its vicinity to the source code, consider
the fix plan, and rate the likelihood that the snippet is the
correct location. This approach mirrors various techniques
developers use to localize accessibility issues in the source
code, as mentioned in Section III. The language model’s
code comprehension capabilities, combined with its knowl-
edge of accessibility, enable it to rate the alignment of
the code with the highlighted element in the screenshot
and the fix strategy. FixAlly selects the code snippets
with the highest match rates for further comparison by
the Localizer agent. The Localizer agent ranks the highly
rated snippets and selects the one most likely to be the
correct location for applying the fix.

C. Fixer: Modifying the code

The goal of the Fixer agent is to apply the fix strategy
to the selected code snippet. The Fixer agent receives
the issue details, the fix strategy for the issue, and the
most relevant code snippet to be modified based on the
plan. Instead of relying on the agent to generate a diff, we
instruct the agent to directly apply the modifications and
return the updated code. This approach avoids potential
inaccuracies in diff generation by language models, which
may struggle with accurately calculating changes across
lines of code and managing the required number of tokens.
Finally, the Suggestion Generation Engine module applies
the diff and creates a new copy of the project.

D. Output

It also stores a diff of the updated code and the original
buggy code to provide a visualization of the code sugges-
tion for developers to examine. Figure 5 shows examples
of fix suggestions generated by FixAlly, demonstrating
its ability to address different types of issues and apply
different strategies to fix an issue. The output of FixAlly
is currently a diff visualization of the code for each fix sug-
gestion along with the fix plan and the model’s explanation
of the changes.

As shown in Figure 5(a), FixAlly correctly identifies a
group of semantically related elements and merges them
into an interactive container to address the issue of small
hit target size. In contrast, Figure 5(b) demonstrates the
capability of FixAlly in splitting a single element into
a group of elements to address the Text Clipped issue.
Figure 5(c) shows that when fixing the contrast issue of
the “Dismiss” button, the tool also maintains the app’s
design integrity by applying the proposed fix to a similar
“Add” button in the toolbar, demonstrating its ability
to fix accessibility issues while maintaining consistency
between similar UI elements.

VI. Evaluation
We evaluated FixAlly through the following research

questions:
RQ1. (Effectiveness) How effective is FixAlly in gener-

ating code fixes for accessibility issues detected by
an accessibilty scanner?

RQ2. (Efficiency) What is the efficiency of FixAlly in
terms of time, the number of attempts, and the
cost?

RQ3. (Helpfulness) How helpful are the proposed fixes
for developers?

A. Experimental Setup
We evaluated our approach using 14 open-source apps

sourced from GitHub. Specifically, we randomly selected
apps from two GitHub repositories that catalog open-
source iOS apps [24], [25], excluding apps not built using
SwiftUI. For each app, one of the authors attempted to
build the app successfully within a 30 minute window. We
also excluded apps with build errors due to dependencies,
external packages, or very old iOS versions from the
dataset. Table I provides a list of the apps included in our
study. The list of apps with their corresponding GitHub
links is also available in our supplementary materials. Fix-
Ally’s implementation leverages LLM agents based on
GPT-4o, which features a 128K context window and has a
knowledge cut-off date of October 2023. We conducted the
experiments on a MacBook M1 Pro equipped with 32GB
of RAM, a typical computer setup for development. We
used Xcode 15.0, the latest available version, to build the
apps, and we installed and tested them on an iPhone 12.

B. RQ1. FixAlly’s effectiveness
We assessed the efficacy of FixAlly by evaluating its

ability to propose fix suggestions for 204 issues across 22
screens of SwiftUI iOS apps. Table I presents the outcomes
of FixAlly in generating fix suggestions. We use the term
plausible to indicate that the generated fix resolved the
targeted issue while maintaining app functionality and
without introducing new issues.

FixAlly demonstrated a 77% effectiveness in auto-
matically generating fix suggestions for accessibility is-
sues, where effectiveness means it successfully produced
at least one plausible suggestion out of three suggestions
for 157 out of 204 issues. Furthermore, for 129 (63%) of
these issues, FixAlly generated two or three plausible
fix suggestions, providing developers multiple options to
consider.

We also assessed the categories of issues that FixAlly
can generate fix suggestions for. Our dataset contains nine
different types of issues as shown in Table II. According to
the documentation for Accessibility Inspector [26], these
issues encompass the categories of Element description,
Element detection, Hit region, Contrast, Clipped text,
Traits, and Dynamic type. However, our dataset does not
contain trait issues: we found that even when modifying

TABLE I
FixAlly’s effectiveness in generating fixes

for accessibility issues

App1 Screens n Plausible Fix (PF)

ARPlasticOcean 1 5 4
Calculator 1 24 22
DeTeXt 1 1 1
DesignRemakes 1 1 0
ExpenseTracker 1 5 4
Fingerspelling 1 4 3
Instagram 2 5 3
Landmarks 3 55 48
Ratio 1 15 10
Scrumdinger 2 7 6
Go Cycling 4 74 52
DesignCode 1 8 7
GradeCalc 2 7 3
Sunshine 1 1 1

Total 22 205 158
1 Open-source apps from GitHub.

TABLE II
FixAlly’s effectiveness in fixing different types of issues

Category Issue type n PF1

Clipped text Text clipped 15 11

Contrast Contrast failed 27 21
Contrast Contrast nearly passed 21 17

Dynamic type Dynamic Type font sizes are
partially unsupported

16 11

Dynamic type Dynamic Type font sizes are
unsupported

58 39

Element description Element has no description 43 38
Element description Label not human-readable 3 3
Element detection Potentially inaccessible text 8 7

Hit region Hit area is too small 21 17
1 Indicates the number of issues with at least one plausible fix.

some apps to purposefully contain these issues, Accessi-
bility Inspector detected these only on the iOS simulator
and not on the physical device used for our experiments.
Excluding Traits, FixAlly could successfully resolve at
least one issue from each type.

To understand the failures of FixAlly, the first author
manually inspected a subset of the generated fix sugges-
tions that did not resolve the accessibility issues. Their
analysis suggests that these failures may stem from short-
comings in the planning, localization, or fixing phases. For
example, for the issue “Text Clipped” only one of the fix
suggestions was plausible. Two out of three plans gener-
ated by the planner were irrelevant, indicating that not all
issues may have multiple plausible solutions. Additionally,
in some cases, the tool may select incorrect code snippets
for fixing. When there is insufficient information about the
problematic element, the model might fail to identify the
relevant code snippet, leading to ineffective fix suggestions.
Even if localization is accurate, the generated code may
contain build errors or be ineffective. Despite these issues,

the proposed plans, related code snippets, and SwiftUI
accessibility attributes generated by the tool can still help
developers devise a fix more quickly. Furthermore, some
reported failures were due to false positives from the
Accessibility Inspector. For instance, after testing the app
with different font sizes, we found that the issue ”Dynamic
Type font sizes are unsupported” was incorrectly reported
in two cases for Landmarks app. Given these factors, the
tool’s effectiveness in practice may be higher than what is
reflected in our current report.

We also hypothesized that the capabilities of FixAlly
extend beyond the issues reported by the Inspector. In
one experiment on a reported issue on GitHub for an iOS
app [27], we attempted to fix the “incorrect focus order”
issue using FixAlly. Due to the lack of accessibility
identifiers and GUI tests, we manually localized the code
snippet and allowed the tool to perform the planning and
fixing phases. We provided the screenshot and the title of
the report to the model. Given the related code snippet,
the model’s first plan was to “set the accessibilityElements
property of the parent view.” The model generated a fix,
adding ‘.accessibilityElement(children:.contain)’
to the parent view, which was very similar to the fix sub-
mitted by developers. To ensure there was no data leakage
to the LLM, we confirmed that the commit date for fixing
that issue was after the knowledge cut-off date of GPT-
4. While this experiment demonstrates that FixAlly’s
capabilities can extend beyond the issues reported by the
Accessibility Inspector, further experiments are needed.

C. RQ2. FixAlly’s efficiency
In this research question, we assessed FixAlly’s ef-

ficiency in terms of the number of attempts, time, and
number of tokens required to fix issues.

In terms of the number of attempts, our experiments
indicate that out of 363 plausible fix suggestions, FixAlly
generated 157 of them on the first attempt, while FixAlly
generated 124 and 82 on the second and third attempts,
respectively. For the majority of the plausible fix sugges-
tions (57%), the feedback loop design helped FixAlly
resolve the reported failures and generate a plausible fix
suggestion, positively impacting the model’s effectiveness.
However, this improvement in effectiveness comes at the
cost of efficiency. By making this feedback loop a con-
figurable parameter, users can adjust it to match their
specific resource constraints, thereby balancing efficiency
and effectiveness.

We also evaluated the time required for the tool to
fix the issues. The mean time to propose alternative fix
suggestions (averaged across 10 randomly selected issues)
was 54 seconds. Therefore, for a screen with 10 issues,
the tool can provide solutions in less than 10 minutes,
demonstrating its practical usability. The breakdown of
this time is as follows:

The time required for the Data Processing module to
statically analyze the app depends on the project’s com-

plexity and the number of views it contains. For the apps
in our test set, it takes an average of 6 ms to extract the
UI hierarchy and instrument the code. Extracting acces-
sibility issues involves building the app, running the GUI
test, and using the Accessibility Inspector to dynamically
assess the app. These steps, performed by both the Data
Processing and Suggestion Assessment modules, take an
average of 130 ms per screen.

FixAlly’s performance is also closely tied to the LLM
response time. We use a publicly available API to commu-
nicate with the agents, and various factors, such as online
traffic and token constraints per minute, can impact the
model’s response time. In our experiments, the average
response times (across 10 randomly sampled issues) for
the Planner, Localizer, and Fixer were 7s, 29.5s, and 8.2s,
respectively. The Localizer’s longer response time is due to
its need to evaluate multiple candidate snippets, requiring
more than one inquiry to the model.

In addition to time considerations, the cost of using
LLMs is closely related to the number of tokens processed.
The average number of tokens per inquiry to the Planner,
Localizer, and Fixer is 10K, 15K, and 20K, respectively.
The GPT-4o model used in this study costs $5 per 1M
tokens. For a screen with about 10 issues, the total cost of
using the tool is less than $10.

D. RQ3. FixAlly’s helpfulness
To evaluate the helpfulness of FixAlly in assisting

developers with fixing accessibility issues, we conducted
a survey of 12 iOS developers within our company. We
recruited them from a participant pool from prior studies
with around 60 candidates. In the survey, developers rated
suggestions produced by FixAlly and gave feedback on
the overall usefulness of the tool. The developers self-rated
their SwiftUI iOS development experience on a scale from
1 (No Experience) to 5 (Expert). The developers’ median
self-rated expertise in SwiftUI app development was 5
() and in accessibility testing was 5 (). We excluded
developers who self-rated as 1 (No Experience) for either
of these questions from answering the survey.

We randomly selected 9 issues and generated plausible
fixes for them using FixAlly. Figure 6 illustrates one
of these issues with three alternative code suggestions to
fix the issue. For each issue, we showed developers an
annotated screenshot with the issue reported by Acces-
sibility Inspector along with a diff visualization for each
of the three suggestions and the fix plan and explanation
of changes from the LLM.

1) Acceptance of Fix suggestions: Initially, the survey
asked the developers to describe what the issue meant and
if they had a hypothesis and a plan for how to fix the issue
before showing them the fix suggestions. The developers
overall accessibility testing expertise was relatively high.
We presented the developers three fix suggestions from
the tool and asked whether they would accept any of
the proposed suggestions. Overall, developers accepted a

Fig. 6. A sample issue with three fix suggestions generated by
FixAlly. The first image shows the ”Contrast Failed” issue and
its original code snippet in Ratio app. The following three boxes
represent different plans, each with the modified code snippet and
the corresponding screenshot updates.

suggestion as is or with some modifications for 70% of the
issues.

Developers did not always accept a fix suggestion that
aligned with their initial hypothesis and fix plan. An ac-
cessibility testing expert (also an author) assessed “align-
ment” of developers’ hypothesis and fix plan matched
the corresponding fix suggestion using a scoring rubric of
0 – did not match, 1 – matched with some conceptual
difference or different level of specificity, and 2 – perfect
match. The mean score for “alignment” was 1.1 (Med: 1,
σ = 1.31) and 68% of the accepted fixes at least partially
aligned with the developers’ initial fix plan and hypothesis.

2) Helpfulness: Developers also rated how helpful (from
1 - least helpful to 5 - most helpful) they would find a tool
that proposed suggestions for fixing accessibility issues.
Developers median rating for helpfulness was 3 (). Less
experienced developers in accessibility testing rated the
tool as more helpful.

Developers rating the tool a 5 or 4 (6 developers) found
it useful the tool gave multiple suggestions, and noted it
was especially useful to help less experienced developers
in accessibility testing and implementation to understand
different fix strategies.

While developers who rated the tool a 2 (Slightly Help-
ful) or 3 (Moderately Helpful) (6 developers) found the
FixAlly’s localization of the issue helpful, and liked that
it provided several options, they critiqued some solutions
for not addressing the root of the issue or for being sub-
optimal. All developers rating FixAlly’s helpfulness as
2 or 3 predominantly focus on accessibility engineering
and testing for their job, while the remaining developers
(rating helpfulness as 4 or 5) primarily focus on software
engineering and occasionally perform accessibility testing.

The developers’ opinions were also mixed on whether it
would be useful for the tool to also provide sub-optimal fix
suggestions or suggestions which do not fix the issue. Some
thought it would be useful to see alternative suggestions
to stoke the developer’s imagination for finding the right
solution (6 developers), while some (3 developers) thought
providing these suggestions which were known to not fix
the issue could be confusing or distracting, especially to
developers less experienced with accessibility testing.

3) Plausible fix vs correct fix.: With FixAlly, our goal
was to generate plausible fixes—code modifications that
pass the accessibility checks of an automated scanner with-
out introducing new issues or removing any functionality.
Our survey shows that out of 36 developer assessments
of plausible fix suggestions, only 11 cases did not receive
approval for any of the suggested fixes, resulting in a 69.4%
developer acceptance of fixes. However, further studies
are needed to understand the various considerations app
development teams take into account when determining a
correct fix, before automating that process.

VII. Threats to Validity

External Validity: One limitation of FixAlly is that
it assesses issues individually, even though many issues
may be interconnected. For example, fixing one issue might
resolve others, or altering the appearance of one element
might require adjustments to other related elements. To
address this, we have designed the Fixer prompt to cas-
cade design changes across elements to maintain design
integrity. As Figure 5(c) shows, the model can consider this
aspect in some cases. However, without a clear definition
of relevant elements and design integrity, the tool’s limi-
tations and capabilities are unknown. Future work could
focus on developing metrics to assess design integrity or
grouping related issues to propose unified solutions and
enhance the performance of the tool.

Additionally, FixAlly focuses on single-view files for
localizing and generating fixes for issues, which means
it cannot address problems that require changes across
multiple files. Although the issues in our test set could be
resolved within single files, studying more complex, cross-
file issues—albeit less common—remains a compelling
area for future research. This limitation also impacts the
consideration of overall app design integrity beyond a
single screen. While providing multiple suggestions allows
developers to choose the most suitable one based on app
design decisions, incorporating techniques to group issues
across different app screens would enhance the tool.

Lastly, the tool has been implemented and tested on
iOS apps. We believe that the benefits of FixAlly can be
generalized to other platforms by using appropriate tools
to build, instrument, and audit apps on those platforms.
The system definitions for agents can also be adjusted
according to the platform, such as specifying expertise in
SwiftUI for iOS or in Android development for Android
apps. However, this generalizability needs to be further
evaluated.

Internal Validity: We implemented FixAlly using
various tools and libraries, including XCTest, Accessibility
Inspector, and the Tree-sitter library for code parsing [28].
These external tools may introduce defects into the sys-
tem, and the prototype itself may contain implementation
bugs. To mitigate these issues, we tested the tool on a
variety of apps at different stages and ensured that we
used the latest updates of the external tools.

VIII. Related Work

Our work fits into the space of automated accessibility
testing and repair tools, which have advanced the state-
of-the-art for automated detection and reported of acces-
sibility issue. Our work is among the first to localize and
suggest fixes in code for these issues. We also review work
LLM-based program repair and fault localization which
use similar multi-agent architecture, but do not address
GUI or accessibility issues.

A. Automated accessibility testing and repair

Many automated tools have been released and proposed
in research over the years to detect accessibility issues.
Static tools [29] examine code directly to find potential
issues. One limitation with these tools is that they do not
have access to the run-time interface that can be created
programmatically or injected with data at runtime. Test-
time tools can detect issues from the runtime UI [30]–[32]
but are limited by the coverage of the input UI tests which
prior work suggests may not exist or have very incomplete
coverage over UI states [33]. Accessibility scanners that
examine a run-time interface can detect different classes of
issues that surface at run-time [9], [10], [30] and do not rely
on pre-existing UI tests. However, accessibility scanners
have two main limitations: 1) they do not assist developers
in effectively localizing the impacted UI element with an
issue, and 2) they provide developers with little assistance
in fixing the issue other than sometimes a single high-level
non-contextualized fix suggestion. FixAlly takes as input
an issue detected by one of these tools, its description,
information about the impacted UI element in the form
of a screenshot (i.e., Accessibility Inspector [10]), and the
app source code, and both localizes the UI element and
provides multiple relevant fix suggestions.

Some work combines run-time accessibility scanners
with app crawlers to detect and report accessibility is-
sues [12], [34], [35]. While these tools can surface more
issues to developers, the amount of issues reported by
these tools can be overwhelming [36] especially when even
localizing and fixing one issue is already challenging. These
tools are also not connected to the underlying source code,
which can often be a reason for developers to ignore the
reported issues from these tools.

Another area of work has developed single-purpose,
mostly machine-learning based, techniques to detect spe-
cific accessibility issues such as color issues [13], touch
target size [16], missing labels [14], and text scaling [15].
These solutions have predominately focused on Android
apps, which have very different specification than iOS
apps and are not implemented in SwiftUI. Zhang et. al [6]
detect and repair UI elements for the iOS VoiceOver screen
reader using an approach that could be platform agnostic.
However, there remains a huge gap between these solutions
and the original source code where the developer must
make the fix. Even if the localization issue were solved by
these methods, there would still be a need to generate
alternate fix solutions. As we learned in our formative
interviews, fixing one issue may introduce other issues, so
there is likely no one-size-fits-all fix for each issue category.
Developers need to consider many other requirements to
determine the correct fix (e.g., input from design teams,
impact on other areas of the app). In contrast to prior so-
lutions, FixAlly both localizes the code for the impacted
UI element and suggests multiple candidate fixes. Future
versions of FixAlly can also incorporate some of these

techniques into its pipeline for issue detection, and then
rely on the capabilities of its LLM to suggest candidate
solutions.

B. LLM-based program repair and fault localization
Recent progress in LLMs have advanced their applica-

tion in automating program repair tasks. A systematic sur-
vey on LLMs for automated program repair [37] reviewed
127 studies, covering various aspects of this problem, but
none specifically address GUI or accessibility issues.

The only study focused on GUI issues is ACCESS [38],
which examines LLM capabilities in correcting web acces-
sibility violations by exploring different prompt engineer-
ing techniques to fix issues reported on specific HTML
tags. This approach is limited to textual data from web
pages and does not address mobile app issues, where it is
necessary to identify the location of the problematic GUI
element in the code.

Recently, researchers have expanded beyond prompt en-
gineering to enhance LLM-based bug repair performance
for GitHub issues. They have employed various techniques,
including fine-tuning on specific datasets [39]–[43], or more
advanced strategies such as retrieval-augmented genera-
tion to guide search space [44], agents interacting with
other tools [45], [46], or multi-agent systems operating in
different steps [47]–[49].

In these works [48], [49], researchers drew inspiration
from human roles in real-world scenarios, such as Manager
and Developer, to design LLM agents with specific actions.
Tao et al. [48] enforce collaboration between agents to
localize a file and implement a patch. Chen et al. [49]
proposed four collaborative plans for agents to address
issues, with the Manager agent selecting a plan from pre-
defined options. These studies demonstrate how modeling
software engineering processes with agents can enhance
issue resolution capabilities. However, these approaches
only address functional issues reported on GitHub.

In contrast to prior related work, our work targets
accessibility issues in mobile apps using a novel multi-
agent LLM architecture. It designs agents inspired by
the steps developers take to solve these problems while
also considering their unique characteristics, such as the
diversity of accessibility issues, various fix strategies, and
the need to analyze GUI images with reported issues. We
developed FixAlly, which analyzes issues in mobile apps,
employs a plan-localize-fix process, and produces plausible
fixes. Additionally, FixAlly incorporates a feedback loop
that uses natural language error messages to enable the
LLM to reflect [50] on and address its own failures.

IX. Conclusion

Fixing accessibility issues in mobile apps is a challenging
task for developers. While automated scanners can identify
these issues, they often fall short in guiding developers to
the exact location in the code and suggesting appropriate

fixes. Towards addressing these needs, we proposed a plan-
localize-fix technique, operationalized through a multi-
agent LLM architecture called FixAlly. Evaluations on
FixAlly demonstrate its capabilities in suggesting plau-
sible fix suggestions and highlight how the tool assists the
developer in the decision-making process for selecting and
applying accessibility-related fixes. Our results suggest
that applying LLMs to fix accessibility issues in source
code is an encouraging direction.

References
[1] Android, “Build more accessible apps,” https://developer.

android.com/guide/topics/ui/accessibility, Google, 2022, last
Accessed: May 6, 2022.

[2] Apple, “Accessibility on ios,” https://developer.apple.com/
accessibility/ios/, Apple, 2022, last Accessed: May 6, 2021.

[3] W3C, “Wcag 2 overview,” https://www.w3.org/WAI/standards-
guidelines/wcag/, W3C, 2024, last Accessed: July 18, 2024.

[4] A. Alshayban, I. Ahmed, and S. Malek, “Accessibility issues in
android apps: state of affairs, sentiments, and ways forward,” in
2020 IEEE/ACM 42nd International Conference on Software
Engineering (ICSE). IEEE, 2020, pp. 1323–1334.

[5] C. Vendome, D. Solano, S. Liñán, and M. Linares-Vásquez,
“Can everyone use my app? an empirical study on accessibility
in android apps,” in 2019 IEEE International Conference on
Software Maintenance and Evolution (ICSME). IEEE, 2019,
pp. 41–52.

[6] X. Zhang, L. de Greef, A. Swearngin, S. White, K. Murray,
L. Yu, Q. Shan, J. Nichols, J. Wu, C. Fleizach et al., “Screen
recognition: Creating accessibility metadata for mobile applica-
tions from pixels,” in Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems, 2021, pp. 1–15.

[7] A. S. Ross, X. Zhang, J. Fogarty, and J. O. Wobbrock, “Exam-
ining image-based button labeling for accessibility in android
apps through large-scale analysis,” in Proceedings of the 20th
International ACM SIGACCESS Conference on Computers and
Accessibility, 2018, pp. 119–130.

[8] T. Bi, X. Xia, D. Lo, J. Grundy, T. Zimmermann, and D. Ford,
“Accessibility in software practice: A practitioner’s perspective,”
ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 31, no. 4, pp. 1–26, 2022.

[9] Google, “Get started with accessibility scanner - android
accessibility help,” 2024. [Online]. Available: https://support.
google.com/accessibility/android/answer/6376570

[10] A. Inc., “Accessibility Programming Guide for OS
X: Testing for Accessibility on OS X,” March
2022. [Online]. Available: https://developer.apple.com/
library/archive/documentation/Accessibility/Conceptual/
AccessibilityMacOSX/OSXAXTestingApps.html

[11] F. Mehralian, N. Salehnamadi, S. F. Huq, and S. Malek, “Too
much accessibility is harmful! automated detection and analysis
of overly accessible elements in mobile apps,” in 2022 37th
IEEE/ACM International Conference on Automated Software
Engineering, IEEE. Rochester, Michigan, USA: ACM New
York, NY, USA, 2022.

[12] N. Salehnamadi, F. Mehralian, and S. Malek, “Groundhog: An
automated accessibility crawler for mobile apps,” in 2022 37th
IEEE/ACM International Conference on Automated Software
Engineering, IEEE. Rochester, Michigan, USA: ACM New
York, NY, USA, 2022.

[13] Y. Zhang, S. Chen, L. Fan, C. Chen, and X. Li, “Automated
and context-aware repair of color-related accessibility issues for
android apps,” in Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, 2023, pp. 1255–1267.

[14] F. Mehralian, N. Salehnamadi, and S. Malek, “Data-driven
accessibility repair revisited: on the effectiveness of generating
labels for icons in android apps,” in Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
2021, pp. 107–118.

[15] A. S. Alotaibi, P. T. Chiou, F. M. Tawsif, and W. G. Halfond,
“ScaleFix: An Automated Repair of UI Scaling Accessibility
Issues in Android Applications,” in Proceedings of the 39th
IEEE International Conference on Software Maintenance and
Evolution (ICSME), October 2023.

[16] A. S. Alotaibi, P. T. Chiou, and W. G. Halfond, “Automated
repair of size-based inaccessibility issues in mobile applications,”
in 2021 36th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, 2021, pp. 730–742.

[17] Apple Developer, “Swiftui - build user interfaces for any apple
device,” https://developer.apple.com/xcode/swiftui/, 2024, ac-
cessed: 2024-07-20.

[18] I. D. Foundation, “Affinity diagrams,” Dec 2017. [On-
line]. Available: https://www.interaction-design.org/literature/
topics/affinity-diagrams

[19] A. Inc., “Xctest,” Aug 2023. [Online]. Avail-
able: https://developer.apple.com/documentation/xctest/
user interface tests

[20] testableapple, “xcmonkey: Stress testing tool for ios apps,”
2024, accessed: 2024-07-20. [Online]. Available: https://github.
com/testableapple/xcmonkey

[21] T. Su, G. Meng, Y. Chen, K. Wu, W. Yang, Y. Yao, G. Pu,
Y. Liu, and Z. Su, “Guided, stochastic model-based gui testing
of android apps,” in Proceedings of the 2017 11th joint meeting
on foundations of software engineering, 2017, pp. 245–256.

[22] A. Inc., “accessibilityidentifier,” July 2024. [Online].
Available: https://developer.apple.com/documentation/uikit/
uiaccessibilityidentification/1623132-accessibilityidentifier

[23] OpenAI, “Gpt-4,” https://openai.com/index/gpt-4/, 2024, ac-
cessed: 2024-07-20.

[24] vsouza, “Awesome ios,” https://github.com/vsouza/
awesome-ios, Accessed: 2024.

[25] dkhamsing, “Open source ios apps,” https://github.com/
dkhamsing/open-source-ios-apps, Accessed: 2024.

[26] Apple Inc., “Performing accessibility audits
for your app,” Apple Developer Documenta-
tion, July 2024, accessed: 2024-08-01. [On-
line]. Available: https://developer.apple.com/documentation/
accessibility/performing-accessibility-audits-for-your-app

[27] Orange Open Source, “Issue #703: Check accessibility issues on
ios17,” GitHub, 2023, accessed: 2024-08-01. [Online]. Available:
https://github.com/Orange-OpenSource/ods-ios/issues/703

[28] Tree-sitter, “Tree-sitter,” https://tree-sitter.github.io/
tree-sitter/, 2024, accessed: 2024-07-24. [Online]. Available:
https://tree-sitter.github.io/tree-sitter/

[29] Google, “Android lint,” 2022. [Online]. Available: https:
//support.google.com/accessibility/android/answer/6376570

[30] N. Salehnamadi, A. Alshayban, J.-W. Lin, I. Ahmed, S. Bran-
ham, and S. Malek, “Latte: Use-case and assistive-service driven
automated accessibility testing framework for android,” in Pro-
ceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, 2021, pp. 1–11.

[31] G. O. S. Framework), “Earl grey: ios ui automation test
framework,” 2022. [Online]. Available: https://github.com/
google/EarlGrey

[32] Google, “Espresso,” 2021. [Online]. Available: https:
//developer.android.com/training/testing/espresso

[33] M. Padure and C. Pribeanu, “Comparing six free accessibility
evaluation tools,” Informatica Economica, vol. 24, no. 1, pp.
15–25, 2020.

[34] M. M. Eler, J. M. Rojas, Y. Ge, and G. Fraser, “Automated
accessibility testing of mobile apps,” in 2018 IEEE 11th In-
ternational Conference on Software Testing, Verification and
Validation (ICST). IEEE, 2018, pp. 116–126.

[35] A. Swearngin, J. Wu, X. Zhang, E. Gomez, J. Coughenour,
R. Stukenborg, B. Garg, G. Hughes, A. Hilliard, J. P. Bigham
et al., “Towards automated accessibility report generation for
mobile apps,” ACM Transactions on Computer-Human Inter-
action.

[36] S. F. Huq, A. Alshayban, Z. He, and S. Malek, “# a11ydev:
Understanding contemporary software accessibility practices
from twitter conversations,” in Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems, 2023, pp.
1–18.

https://developer.android.com/guide/topics/ui/accessibility
https://developer.android.com/guide/topics/ui/accessibility
https://developer.apple.com/accessibility/ios/
https://developer.apple.com/accessibility/ios/
https://support.google.com/accessibility/android/answer/6376570
https://support.google.com/accessibility/android/answer/6376570
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/library/archive/documentation/Accessibility/Conceptual/AccessibilityMacOSX/OSXAXTestingApps.html
https://developer.apple.com/xcode/swiftui/
https://www.interaction-design.org/literature/topics/affinity-diagrams
https://www.interaction-design.org/literature/topics/affinity-diagrams
https://developer.apple.com/documentation/xctest/user_interface_tests
https://developer.apple.com/documentation/xctest/user_interface_tests
https://github.com/testableapple/xcmonkey
https://github.com/testableapple/xcmonkey
https://developer.apple.com/documentation/uikit/uiaccessibilityidentification/1623132-accessibilityidentifier
https://developer.apple.com/documentation/uikit/uiaccessibilityidentification/1623132-accessibilityidentifier
https://openai.com/index/gpt-4/
https://github.com/vsouza/awesome-ios
https://github.com/vsouza/awesome-ios
https://github.com/dkhamsing/open-source-ios-apps
https://github.com/dkhamsing/open-source-ios-apps
https://developer.apple.com/documentation/accessibility/performing-accessibility-audits-for-your-app
https://developer.apple.com/documentation/accessibility/performing-accessibility-audits-for-your-app
https://github.com/Orange-OpenSource/ods-ios/issues/703
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://tree-sitter.github.io/tree-sitter/
https://support.google.com/accessibility/android/answer/6376570
https://support.google.com/accessibility/android/answer/6376570
https://github.com/google/EarlGrey
https://github.com/google/EarlGrey
https://developer.android.com/training/testing/espresso
https://developer.android.com/training/testing/espresso

[37] Q. Zhang, C. Fang, Y. Xie, Y. Ma, W. Sun, and Y. Y. Z. Chen,
“A systematic literature review on large language models for
automated program repair,” arXiv preprint arXiv:2405.01466,
2024.

[38] C. Huang, A. Ma, S. Vyasamudri, E. Puype, S. Kamal, J. B.
Garcia, S. Cheema, and M. Lutz, “Access: Prompt engineering
for automated web accessibility violation corrections,” arXiv
preprint arXiv:2401.16450, 2024.

[39] W. Wang, Y. Wang, S. Joty, and S. C. Hoi, “Rap-gen: Retrieval-
augmented patch generation with codet5 for automatic program
repair,” in Proceedings of the 31st ACM Joint European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, 2023, pp. 146–158.

[40] B. Berabi, J. He, V. Raychev, and M. Vechev, “Tfix: Learning
to fix coding errors with a text-to-text transformer,” in Inter-
national Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, vol. PMLR, 2021, pp. 780–791.

[41] M. Fu, C. Tantithamthavorn, T. Le, V. Nguyen, and P. Dinh,
“Vulrepair: A t5-based automated software vulnerability re-
pair,” in Proceedings of the ACM Joint European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE. ACM, 2022, pp. 935–
947.

[42] E. Mashhadi and H. Hemmati, “Applying codebert for au-
tomated program repair of java simple bugs,” in Proceedings
Companion of the 18th IEEE/ACM International Conference
on Mining Software Repositories (MSR’21), 2021, pp. 505–509.

[43] M. Lajkó, V. Csuvik, and L. Vidács, “Towards javascript pro-
gram repair with generative pre-trained transformer,” in 2022
IEEE/ACM International Workshop on Automated Program
Repair. IEEE, 2022, pp. 61–68.

[44] C. E. Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and
K. Narasimhan, “Swe-bench: Can language models resolve real-
world github issues?” arXiv preprint arXiv:2310.06770, 2023.

[45] J. Yang, C. E. Jimenez, A. Wettig, K. Lieret, S. Yao,
K. Narasimhan, and O. Press, “Swe-agent: Agent-computer in-
terfaces enable automated software engineering,” arXiv preprint
arXiv:2405.15793, 2024.

[46] I. Bouzenia, P. Devanbu, and M. Pradel, “Repairagent: An au-
tonomous, llm-based agent for program repair,” arXiv preprint
arXiv:2403.17134, 2024.

[47] Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury,
“Autocoderover: Autonomous program improvement,” arXiv
preprint arXiv:2404.05427, 2024.

[48] W. Tao, Y. Zhou, W. Zhang, and Y. Cheng, “Magis: Llm-
based multi-agent framework for github issue resolution,” arXiv
preprint arXiv:2403.17927, 2024.

[49] D. Chen, S. Lin, M. Zeng, D. Zan, J.-G. Wang, A. Cheshkov,
J. Sun, H. Yu, G. Dong, A. Aliev et al., “Coder: Issue re-
solving with multi-agent and task graphs,” arXiv preprint
arXiv:2406.01304, 2024.

[50] N. Shinn, F. Cassano, A. Gopinath, K. Narasimhan, and
S. Yao, “Reflexion: Language agents with verbal reinforcement
learning,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

	Introduction
	Background: Comparing Android and iOS
	Formative Study
	Accessibility Bug Fixing Phases
	Design Goals

	Approach
	Suggestion Generation Engine
	Planner: Suggesting fix plans
	Localizer: Finding the relevant code snippet
	Fixer: Modifying the code
	Output

	Evaluation
	Experimental Setup
	RQ1. FixAlly's effectiveness
	RQ2. FixAlly's efficiency
	RQ3. FixAlly's helpfulness
	Acceptance of Fix suggestions
	Helpfulness
	Plausible fix vs correct fix.

	Threats to Validity
	Related Work
	Automated accessibility testing and repair
	LLM-based program repair and fault localization

	Conclusion
	References

