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ABSTRACT
Machine learning models have been trained to predict semantic
information about user interfaces (UIs) to make apps more acces-
sible, easier to test, and to automate. Currently, most models rely
on datasets of static screenshots that are labeled by human an-
notators, a process that is costly and surprisingly error-prone for
certain tasks. For example, workers labeling whether a UI element
is “tappable” from a screenshot must guess using visual signifiers,
and do not have the benefit of tapping on the UI element in the
running app and observing the effects. In this paper, we present
the Never-ending UI Learner, an app crawler that automatically
installs real apps from a mobile app store and crawls them to infer
semantic properties of UIs by interacting with UI elements, discov-
ering new and challenging training examples to learn from, and
continually updating machine learning models designed to predict
these semantics. The Never-ending UI Learner so far has crawled
for more than 5,000 device-hours, performing over half a million
actions on 6,000 apps to train three computer vision models for i)
tappability prediction, ii) draggability prediction, and iii) screen
similarity.
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1 INTRODUCTION
Machine Learning (ML) has played an increasingly important role in
the domain of mobile User Interfaces (UIs). Recent techniques have
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used Deep Neural Networks (DNNs) to bridge critical usability gaps
and enable new types of evaluations, such as providing missing
accessibility metadata to UIs [49], giving designers feedback to
make UI features more discoverable [38, 42], and predicting user
engagement with animations [50]. The enabling research artifacts
behind these interactions are large datasets of mobile UI screenshots
annotated by human annotators [10, 19]. These datasets provide
an invaluable volume of data for training DNNs, but they only
capture a fixed snapshot of the views of mobile applications and
are extremely costly to collect and update. In addition, relying on
annotators to estimate certain properties of UI elements from static
visual signifiers is known to be error-prone [38]. Inspired by the
Never Ending Learning paradigm [31], we propose an automated
method for collecting UI element annotations by interacting with
applications directly with an automated crawler that continuously
improves its own performance and can refresh ML models for other
downstream tasks over time.

We built the Never-ending UI Learner, an app crawler that for-
mulates UI semantic learning as an active process that uses real
interactions on real devices to explore UIs and discover proper-
ties which are used to continually train machine learning models.
More specifically, our crawler automatically installs real apps from
mobile app stores and crawls them to discover new, challenging
training examples to learn from (e.g., those that result in low model
confidence). During crawling, the Never-ending UI Learner records
temporal context (i.e., taking screenshots before, during, and after
interactions) that is used by heuristic functions to generate more
accurate labels than are possible from human-annotated single
screenshots. The resulting data is used to train models that pre-
dict the tappability and draggability of UI elements and determine
the similarity of encountered screens. Although the process can
start with a model trained from human-labeled data, the end-to-end
process does not require any additional human-labeled examples.

In contrast to existing data pipelines for data-driven UI modeling
[10, 19, 53], our never-ending UI learning paradigm allows data
collection, annotation, and model training to be performed without
any human supervision and can be run indefinitely. Of course, in
this paper the learning is not truly never-ending. Here we present
experiments that analyze the performance characteristics of our
learner over 5,000 device-hours, in which it performed more than
half a million actions on 6,000 apps. The resulting dataset is an order
of magnitude larger than existing human-annotated UI datasets
[10, 53] and allowed us to analyze the performance of UI semantic

https://doi.org/10.1145/3586183.3606824
https://doi.org/10.1145/3586183.3606824


UIST ’23, October 29-November 1, 2023, San Francisco, CA, USA Wu, et al.

models when trained with increasing amounts of recently collected
examples. Ultimately, we believe this model can be used in a true
“never-ending” style, continually crawling the app ecosystem, col-
lecting data from literally all available apps, and experiencing new
UI styles and trends as new or updated apps are released.

The specific contributions of our paper are as follows:

(1) The Never-ending UI Learner, is a system that opera-
tionalizes our approach for automatically learning from UIs
through never-ending interaction.

(2) Three applicationswhich demonstrate use of theNever-
ending UI Learner. We use our crawler to train three
types of models of UI semantics that are difficult to learn
through existing methods: i) tappability, ii) draggability, and
iii) screen similarity.

2 RELATEDWORK
Our work in never-ending learning of UIs aims to supplement UI
modeling datasets used to model UIs and user interaction through
continual learning. To situate our work, we review related liter-
ature in the i) UI modeling datasets, ii) computational models of
interaction, and iii) approaches for continual machine learning.

2.1 Datasets for Modeling User Interfaces
Several datasets have been collected for the purposes of analyzing
and modeling mobile UIs. The Rico dataset is a large dataset of
72,000 mobile UIs and associated metadata including view hier-
archies, screenshots, and user interactions, collected from 9,700
publicly available Android apps [10]. The FrontMatter dataset uses
static analysis techniques to predict the purpose of UI elements by
determiningwhich systemAPIs are invoked [19]. Large datasets like
these have enabled ML-based methods which can perform various
tasks involving mobile UIs, including providing accessibility anno-
tations [24, 49], giving design feedback [17, 38, 42, 52], suggesting
common interaction flows [54], summarizing screens [46], automat-
ing interaction with UIs [1, 23, 39], and creating rich embeddings
of UI image and text data for other downstream tasks [2, 15, 22].
Almost all currently available datasets are manually created in some
aspect – through manual user interactions with UIs, and/or human
annotations. The WebUI dataset [48] used screenshots and auto-
matically extracted metadata from web pages to train visual UI
models; however, web data was generally noisy and their models
needed additional fine-tuning on smaller human-annotated datasets
to perform well. Our Never-ending UI Learner produces annota-
tions through the automated crawling of mobile applications. These
annotations continually update and refresh the crawler’s models,
improving its performance, and resulting in a continually updated
dataset that can be used to train other models. An important advan-
tage of this approach is that, unlike using mobile UI data collected
during a specific time period, data produced by our crawler is al-
ways current, and can support updating models to keep up with
evolving UI design trends in mobile applications.

2.2 Computational Modeling of Interaction
An important application of large annotated UI datasets is super-
vised training of machine learnings that predict UI semantics. For

example, in this paper we focus on the problems of element tap-
pability [38, 42] and screen “fingerprinting" [11]. More recently,
Reinforcement Learning (RL) has been applied to model user inter-
actions with both physical and digital interfaces. Oulasvirta et al.
proposed a general framework based on RL of how users incorpo-
rate cognitive facilities, their experiences, and their environment
in understanding and interacting with computers [35]. Under this
context, an important part of knowing how to interact with an
interface is by understanding its affordances. Affordances are the
functional properties of an object (e.g., UI) that suggest how it
should be used [34], and designer commentary suggests that design
patterns can make affordance discovery more difficult. Liao et al.
used a virtual robot agent equipped with sensors to simulate and
learn how humans may discover affordances in physical interfaces
(e.g., buttons and sliders) [29]. Our work aims to achieve similar
goals of learning the affordances (e.g., tappability) and capabilities
of interfaces. While our work does not directly model the interac-
tions of users through RL techniques, we aim to achieve similar
goals of learning of the affordances and capabilities of interfaces
through interacting with and inspecting live mobile apps. By ap-
plying interaction learning to a mobile app automated crawler, we
can scale our experiments to a much larger scale, learning from
millions of interactions with UIs.

2.3 Continual Machine Learning
A unique aspect of our work is the intention to continually learn

about UIs over time through sustained, potentially endless inter-
action. Our work is related to active learning (specifically online
active learning), which is a field of ML that seeks to improve models
using only a limited number of human-labeled examples [12]. These
approaches often identify and prioritize difficult or representative
examples to produce the best possible model from a small dataset.
Our work is most related to Never-Ending Learning, which is an
ML paradigm for creating systems that continually learn from ac-
quired experience rather than a single dataset. It was first applied
to web-based knowledge using the NELL system [31]. The system
has been running for prolonged periods of time (years) and has
accumulated over 50 million beliefs (i.e., hypothesized knowledge
snippets), which is possible only by processing large amounts of
data that are prohibitively expensive to annotate. This learning ap-
proach introduces unique challenges, such as the need to learn from
new data while retaining previously acquired knowledge. There
are several techniques in the literature that can be applied to re-
tain previous knowledge that involved i) regularization [18, 28], ii)
rehearsal-based approaches [37], and iii) techniques that address
task-recency bias [4]. From a practical standpoint, implementation
also necessitates maintaining large ever-growing datasets collected
over time, which could either be addressed through a robust crawl-
ing infrastructure or using dataset distillation methods that keep
the most relevant samples [32, 33, 47]. In this work, we apply the
never-ending learning paradigm to benefit automated UI under-
standing systems by training models “from scratch” and fine-tuning
existing models to improve performance.
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Figure 1: Architecture of our Never-ending UI Learner. The
Never-ending UI Learner is a parallelizable mobile app
crawler which consists of a coordinator-worker architecture.
The crawler coordinator distributes crawls to workers and
maintains the dataset. Each crawler worker is connected to
a programatically controlled mobile device which collects
data and runs data post-processing.

3 NEVER-ENDING UI LEARNER
To operationalize our approach, we built the Never-ending UI
Learner, a system that automatically downloads and crawls pub-
licly available apps using remotely operated devices. Our current
implementation and infrastructure is based on iOS. We use stock
factory reset devices that are logged in to testing accounts that are
not associated with any real user data to avoid privacy concerns.

Note that unlike some crawlers that interact with apps using
an OS-provided programmatic interface such as the accessibility
API, our crawler interacts with the device through the VNC remote
desktop protocol, from which it receives regular updates to the
screen and processes them visually and can send raw input events
to the device to create tap, swipe and keyboard actions. Using
VNC, the Never-ending UI Learner is able to reliably interact with
more apps, learn based on the same facilities that a human would
and generalize to other platforms. In this section, we describe the
crawler’s architecture and behavior that enable it to perform never-
ending learning.

3.1 Architecture Overview
Our crawling architecture is shown in Figure 1. We implemented
a distributed crawling architecture which consists of i) a central
coordination server and ii) a large pool of workers to parallelize
the crawling process.

3.1.1 Coordinator Server. The crawler coordination server main-
tains a list of app IDs to crawl which are sent to workers. The
central server keeps track of successful and unsuccessful crawls,
and it automatically retries failed app crawls. App crawlers differ
from web crawlers in that they focus only on the app they are asked
to crawl, although limited cross-app interaction sometimes does
occur (e.g., clicking on a link or permission request dialog). When
all app IDs are exhausted, our crawler can schedule itself to be run

again after a fixed time period (e.g., weekly). The list of app IDs
can be modified between crawls to add new apps or reflect changes
in app availability. While the majority of the app IDs remain the
same, the apps may change their appearance and behavior due to
dynamically updated content and new versions of the software.
Re-crawling the same apps regularly can enable our model to adapt
to design changes over time.

3.1.2 Crawler Worker. Crawler workers are processes that inter-
face with remotely controlled mobile phones and process the col-
lected data. Each crawler worker downloads and installs a target app
whose ID is provided by the central server to the mobile phone and
then runs a program that crawls the app. Screenshots are collected
during interactions and when the crawler believes it has arrived at
a new screen. The program can use three methods to explore the
app (random selection or based on model confidence), and as a part
of this paper, we run experiments to determine the best crawling
strategy for each of our never-ending learning use-cases. We set
a time-limit (5 minutes) on the maximum duration of a crawl for
a single app. Afterwards, the worker processes the collected data
(e.g., screenshots and interactions) with models and heuristics to
generate labels from the observations. Both raw data and processed
output is uploaded to a coordinator server. In our experiments, the
number of crawler workers varied to due to availability from the
device pool which we used, which was shared with other users.
Generally, there were around 40-100 crawler workers.

3.2 Machine Learning Components
Our crawler contains a screen-level and element-level model that
allow it to understand the content on UIs it encounters. We run
these models every time a screenshot is captured to augment it
with useful semantics. Furthermore, the three UI semantic models
that we trained in using the crawler, are designed as extensions of
these base models, improving overall efficiency.

3.2.1 Screen Understanding. To keep track of its crawling progress
in the app, our crawler uses a model to generate semantic represen-
tations of screens. We used a model introduced by previous work
[11] that predicts whether two screenshots belong to the same UI
by encoding each as an embedding vector, which the authors shared
with us. Because significant variation can be introduced by changes
in state, such as a news app that displays new content periodically,
the model is designed to learn the underlying structure of UIs. We
made minor modifications to the previous work in order to develop
a model that could run under our hardware constraints. Instead of
their recommended screen transformer model architecture, we use
their CNN-based model architecture, which is more efficient to run
despite somewhat lower performance [11]. For further optimization,
we use an EfficientNet-B0 [43] model architecture as the backbone
instead of the original ResNet-18 [14], which has more parameters.
As in the original paper, the output of the last layer of the CNN
network is used as a screen embedding. During training, we applied
a data augmentation approach [44] to increase performance. We
followed all other aspects of the original model training and our
final CNN-based model achieves a F1-score of 0.636.
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3.2.2 Element Understanding. To generate element semantics, we
used an object detection model architecture that is similar to Cen-
terNet [55]. At a high level, the detection model slides a window
(via convolutions) over the image and featurizes image sub-regions
using a backbone network (MobileNet-v1 [16]), resulting in embed-
dings for each region. These embeddings are fed into a classification
head which produces per-class confidences, and regions with high
confidences are returned as detections. The model was trained on
theAMP dataset [53], which consists of 77,000 app screens collected
and annotated by annotators from 4,000 iPhone apps. In addition
to the standard element type classification head, which was trained
with the rest of the object detection model, we added heads for
tappability prediction and draggability prediction. The additional
heads are trained independently from the rest of the model by
first freezing the backbone and training the heads on embeddings
corresponding to detected elements.

4 APPLYING NEVER-ENDING LEARNING
In this section, we describe the application of our never-ending
learning framework to three UI semantic models: i) tappability pre-
diction (element semantic), ii) draggability prediction (container
semantic), and iii) screen similarity (screen semantic). The tap-
pability and draggability models were trained completely from
crawler-generated data, while the crawler fine-tuned its existing
screen similarity model that was originally trained using human-
annotated data. For each UI semantic, we developed an interaction-
based heuristic used by our crawler to automatically generate new
training examples for our models. Next, we designed and trained
models to predict each of these semantics from a screenshot. Fi-
nally, to contextualize these models in the context of never-ending
learning, we analyzed their performance over time.

Experimental Setup. We conducted experiments on a list of
6,461 free iOS apps. For the purposes of evaluation, all model train-
ing and experiments were performed with randomized training
(80%), validation (10%) , and testing (10%) splits. We randomly parti-
tioned our list of app IDs, which ensured that all UI screens from an
app were contained in the same split. We use the term crawl epoch
to refer to one complete pass through the list of apps. Note that
unlike an epoch through a training dataset, the actual contents of a
crawl epoch might change from time to time, due to the dynamic
nature of apps.

Our experiments analyzed two aspects of the crawler’s perfor-
mance: i) crawling strategy and ii) performance over time. We ran
three variations of the crawler, which had different crawling strate-
gies: i) randomly selecting elements on each screen (Random), ii)
selecting elements that result in low prediction confidence from
the current models (Uncertainty Sampled), and iii) a hybrid that
for each crawl epoch alternates between Random and Uncertainty
Sampled strategies, inspired by similar approaches in optimization
[40]. To evaluate the performance over time, we ran each crawling
strategy for five crawl epochs. Note that the first crawl epoch for
all strategies uses Random to train an initial confidence-prediction
model. In the Hybrid strategy, because alternation happens at the
epoch level, the second epoch is crawled using the Uncertainty Sam-
pled strategy and thus through two epochs the inputs and results

are identical for both the Uncertainty Sampled and Hybrid strate-
gies. The three strategies fully diverge starting from the third epoch.
Across all experiments, we collected over half a million screenshots,
although the same UI screen may have been visited multiple times.
The number of screenshots in our dataset is considerably larger
than previous work [3, 10, 19, 48].

The crawler’s models were trained and evaluated after each crawl
epoch. After each crawl epoch, model training is resumed with
the updated data from the latest crawl and the model weights are
optimized for 100,000 optimization steps (with early stopping). In
order to maintain a constant validation set across a varying number
of epochs, we only use the evaluation data split from the first epoch
for calculating performance metrics. Finally, for models that were
trained completely on crawler data (tappability and draggability),
we performed additional sub-epoch evaluations during the first
crawl to analyze learning speed.

While the dataset is not released at the time of publication due
to internal regulations, we are investigating processes to make it
available to the broader community. To replicate our work, it is
possible to use tools and models built for comparable platforms
(e.g., Android). Open-source crawlers [25, 45] can be integrated
with available screen similarity [48] and element detection models
[3, 48, 51].

4.1 Tappability
Tapping is the most common interaction on mobile devices, yet it
is often difficult to automatically determine if an element is tap-
pable or not due to missing metadata and ambiguous visual cues.
For example, a text button that doesn’t have sufficient contrast or
missing borders would likely appear untappable to users, and many
games are missing accessibility traits that prevent screen reader
users from using them. Accurate inference of tappability could
aid designers in finding ambiguous visual elements and be useful
for generating metadata for repairing inaccessible apps. Previous
work has used human-annotated UI screenshots to train machine
learning models of tappability. However, this process is surpris-
ingly error-prone [20, 21, 38, 42] due to ambiguous visual cues,
which suggests that human-annotated screenshots are an unre-
liable source of ground-truth for training tappability models. In
contrast, our crawler can use additional context from the entire
interaction, such as before and after screenshots instead of a sin-
gle before screenshot, to determine if tapping resulted in an effect.
Effects could either be state changes, like flipping a toggle, or a
transition to a new screen. We developed a heuristic for inferring
tappability from our crawler’s recorded interactions and found
that it had high agreement with human-annotated videos. We used
heuristic-labeled data to train an efficient tappability “head" model
purely from crawler-annotated data. After five crawl epochs, the
best-performing tappability model reached an F1 score of 0.860.

4.1.1 Tappability Heuristic. We developed a heuristic to infer the
tappability of an element based screenshots of the UI taken before,
during, and after a tap interaction. A tap may result in several
different scenarios, which are captured by our heuristic. First, we
use a screen similarity model to compare screenshots taken before
and after the tap to determine if the tap led the crawler to a new
screen. If a screen change was not detected, the tap could have
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Figure 2: This figure visualizes the steps to our tappability
heuristic. When the crawler arrives at a new screen, it takes
two screenshots separated by 5 seconds as a baseline of visual
change. Then, a detected UI element is chosen and sent a
tap. After waiting for the screen to settle, a post-interaction
screenshot is used to infer the effects of the action.

also changed the screen state. We compute a pixel-based difference
of the “before” and “after” screenshots to identify possible visual
indications of local or global changes, such as tapping a checkbox
or refreshing screen content respectively. Finally, to reduce false
positives, the heuristic also uses multiple screenshots captured
before the tap to identify dynamic areas of the screen (e.g., videos)
whose visual changes are not related to the tap.

To validate the accuracy of our heuristics, we compared its re-
sults against human-labeled interaction videos.We used our crawler
to save short screen recordings of tap interactions that were col-
lected during crawls. Each example video was approximately 10
seconds long and included the tap location overlaid on the video
and temporal context before and after the tap interaction, such as
including transition and loading animations.

We randomly sampled a balanced subset of 1000 video clips
from our crawls and asked human annotators if each video clip
contained a tap interaction. Annotators were recruited, trained, and
paid by a separate team at our organization (all with appropriate
legal/ethical approval). Annotators were employees paid who are
paid a competitive hourly salary for their location.We used standard
classification metrics to evaluate the accuracy of our heuristics,
using the human-annotated labels as ground truth. The tappability
heuristic had an overall accuracy of 0.934, and had a similar number
of false positives (38 instances) and false negatives (28 instances).

4.1.2 Model Implementation. To predict tappability, we designed a
model architecture that operates as a “head” of our existing element
detection model (Figure 3). Heads are small sub-networks or set of
layers usually located close to the output layer of neural network
architectures and generate predictions from featurized representa-
tions of the main input produced by a “backbone” network. Since
element detection is closely related to tappability, we hypothesized
that the previously learned representations are likely to contain
relevant information and greatly accelerate tappability learning.
Our head model is a simple three-layer feed-forward model with an
input size of 128, a hidden size of 64 that we chose throughmanually
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Figure 3: Architecture of our tappability model. The tappa-
bility model is designed as a “head", which is a sub-network
of the UI element detection model. The element detector fea-
turizes image regions in an input screenshot using a sliding
window, which results in a featurized image embedding for
each detected object. The main branch of the network (top)
feeds in the embedding to determine the region’s element
type and position. We feed in the same element embedding
into a separate feedforward network (bottom) to predict the
probability that it is tappable.

tuning, and an output size of 1 that gives tappability confidence.
To train it, we first froze the weights of the element detector’s
backbone network and randomly initialized the parameters of our
feed-forward network. While freezing most of the model reduces
its capacity, it also results in a significant reduction in training time,
since there are fewer parameters to optimize. Then we trained the
model to predict the tappability of an element from a screenshot
of the UI before the tap, and we used the labels generated by our
tappability heuristic as ground truth.

4.1.3 Performance Evaluation. The results of our experiments are
shown in Figure 4. While all crawling strategies are successful in
improving on the initial model from the first epoch, the Random
crawler has the best final performance. In our experiments, the
Random crawler reaches the best final F1 score of 0.860 while the
Uncertainty Sampled crawler reaches the lowest final F1 score of
0.853. While it is not possible to make a direct comparison with
previous work [38, 42] because their experiments were run on
different datasets, it seems that our tappability model is able to
reach similar levels of performance in terms of F1 score after its
first epoch.

We also conducted a comparison between the quality of our
automatically collected tappability dataset and human-annotated
ones, we used the labels provided by the AMP dataset [53]. First, we
trained our classification head model architecture on AMP, which
led to similar performance (F1=0.81) to the originally reported
numbers (also F1=0.81), which used a tree-based model architecture.
However, when we used the model trained on human-annotated
data to predict the tappability of elements in our crawled dataset, we
observed significantly degraded performance (F1=0.60), suggesting
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Figure 4: Performance of tappability over time. The model
performance increases most rapidly during the first crawl
epoch and the rate of improvement plateaus afterward. After
the final epoch, the random crawler achieves the highest F1
score of 0.860, and the uncertainty sampled crawler has the
lowest F1 score of 0.853.

that the human-annotated and crawler-generated labels disagree
with each other. We consider the heuristic-annotated data to be
higher quality since its performance was validated by annotators
with access to a video clip of the entire tapping interaction, and
previous work [38] has shown predicting element tappability from
a single screenshot leads to high variance among raters.

4.2 Draggability
Dragging is a common interaction in mobile apps that involves
touching an element on the screen with one’s finger and moving
the finger along the screen’s surface before finally releasing it.
This interaction is used to manipulate controls, such as sliders and
page controls, and is necessary for accessing off-screen content
via scrolling. While these examples reflect different types of input,
we collectively refer to all these actions as “draggability,” since
they involve similar physical movement. Unlike tappable elements,
draggable elements often have fewer visual signifiers and are more
difficult to automatically detect. To the best of our knowledge,
there aren’t any datasets available with draggability labels, and we
believe that, similar to tappability, it would be difficult for human
labelers to reliably identify draggable elements from screenshots.
To improve screen reader support for inaccessible apps with these
affordances, we used our crawler to automatically find and label
examples through automated interaction. We developed a heuristic
to infer draggability from screenshots of drag interactions. Using
data labeled by this approach, we trained a draggability model that
reached an F1 score of 0.794 after five crawl epochs.

4.2.1 Draggability Heuristic. To detect if a UI element is draggable,
our crawler captures screenshots while attempting to hold and drag
elements. Our crawler first identifies likely candidates, then emu-
lates drag actions to the left (e.g., finger goes to the left) and upward

Template

Scrolled

Elements

Stationary

Elements

Translation

Vector

Post-DragPre-Drag

Template

Figure 5: This figure illustrates the draggability heuristic.
The heuristic uses a pre-drag image (center) which was taken
before the interaction, and a post-drag image (right) which
is taken near the end of the drag interaction, before the “fin-
ger" leaves the screen. A template image is created from the
dragged element (left). The heuristic finds the location of the
template in the post-drag image to infer draggability.

directions to detect horizontal and vertical dragging, respectively.
These directions were chosen because they correspond to the initial
position of lists in left-to-right reading directions, and we execute
drag actions from the center of the element to either its left or top
boundary. The crawler captures one screenshot before the drag
begins and one screenshot at the end of the drag but before its
“finger" leaves the screen.

The high-level idea of the heuristic is to detect which UI ele-
ments, if any, “follow the finger" in the direction of the drag. We
first use the smallest UI element containing the dragged pixel on
the pre-drag image to create an image patch. This image patch
is template-matched with the post-drag image using the normed
correlation coefficient method on grayscaled and edge-detected
images. The vector corresponding to the template displacement is
filtered by cosine angle and magnitude. Next, the patches inside
bounding boxes between the pre-drag and post-drag screens are
compared to identify whether other elements which scrolled during
the drag action. If the contents of a bounding box in the pre-drag
image match the contents of a bounding box translated by the tem-
plate translation vector in the post-drag image, then it is likely a
UI element which has been scrolled together with the original UI
element. We use the normed correlation coefficient method to mea-
sure similarity between these image patches, on grayscaled and
edge-detected images. If no scrolled elements are identified, the
original UI element is also marked as not draggable to filter out
false positives.

We conducted an evaluation of our heuristic on 1000 samples,
which were generated by running the heuristic on screens collected
from a randomized crawl, then selecting 500 screens where the
heuristic was triggered and 500 where it was not. Due to a glitch,
our crawler did not record the interaction videos of the draggability
interaction, however we found that it was straightforward to infer
draggability from the captured before/after screenshots. For each
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Figure 6: Architecture of our draggability model. Similar to
the tappability model, the draggability model uses embed-
dings from the element detector. To give the draggability
model additional context (e.g., presence of partially occluded
elements), all elements on the screen are simultaneously fed
into a single-layer transformer. The resulting contextual em-
beddings are used to predict draggability probability.

interaction step, we presented the annotator with three images, the
pre-drag image, post-drag image, and a combined image with the
both pre- and post- images super-imposed, which allowed more
easy visualization of movement. The images were annotated with
an arrow that indicated where the drag occurred. Again, we used the
human-provided labels as ground-truth to evaluate our heuristic’s
predictions. The draggability heuristic had an overall accuracy of
0.92, and a similar number of false positives (38 instances) and false
negatives (48 instances).

4.2.2 Model Implementation. Unlike tappability, which is an el-
ement semantic, draggability is often associated with containers
that contain multiple elements. We initially tried to use the same
“head” model architecture as our tappability model, which re-uses
the element features generated by our detection model, however
we found that this model achieved low performance (F1 score=0.2).
Upon closer inspection of misclassified examples, we noticed that
visual signifiers for an element’s draggability are often non-local
(i.e., occur elsewhere on the screen). For example, a picture is more
likely to support swiping if page control indicator is located be-
neath it, and scrollability in mobile apps is often best inferred by
searching for partially occluded elements at the end of the list or
near the edges of the screen. Because the element detector featur-
izes image regions by pooling together nearby visual information,
it omits many relevant cues for this task.

Based on these observations, we designed a model based on the
transformer architecture, which allows it to incorporate informa-
tion from the entire screen into its prediction. We first used our
element detector to featurize all detected elements on the screen.
The element embeddings are then fed into self-attention layers to
generate a contextualized embedding. Finally, the elements’ con-
textualized embeddings are fed into a linear classifier with a single
output node to classify draggability. While training the draggability

model, the element detector’s weights are also frozen to improve
training efficiency. For screens where the draggability heuristic
wasn’t triggered, loss is only computed for the directly interacted
element. For screens where the draggability heuristic was triggered,
loss is computed on all elements that were affected by the drag.
In both cases, elements that did not move along with the finger
are ignored in the loss calculation, as it isn’t possible to know for
certain if they are not draggable without interacting with them.

4.2.3 Performance Evaluation. Our evaluation of the draggability
model focused on performance over time (See Figure 7).

The results of our experiments are shown in Figure 7. The Hybrid
crawler had the highest final performance (F1=0.794), while the
Uncertainty Sampled crawler was lowest (F1=0.770). Interestingly,
the Uncertainty Sampled and Hybrid crawls both experienced a
decrease in performance during the second crawl epoch. While
the Uncertainty Sampled crawler continued to decline, the Hybrid
crawler alternated to its randomized crawl strategy and began to
rapidly improve. We hypothesize that the uncertainty sampling
during the second epoch may have imbalanced the dataset by col-
lecting many examples of similar elements while ignoring others,
and thus negatively impacted the subsequent model.

From our experimental results and anecdotal observations, we
hypothesize that draggability is harder to infer from static visual
information alone due to the lack of local cues, and the best way to
discover functionality that involves dragging may be learning from
extended usage. In some cases, it may be appropriate to directly
apply the draggability heuristic at run-time. In contrast to tapping,
which is likely to alter the state of the UI or bring the user to a
new page, we hypothesize that many dragging interactions are
less likely to lead to side-effects. Our model could be used to first
identify likely candidates for interaction-based verification.

Similar to the tappability model, we also observed small gains in
performance over time; however, there was less overall improve-
ment to draggability performance. One possible reason is that since
draggability is more difficult to infer visually, the model reached its
ceiling earlier.

4.3 Screen Similarity
We used our crawler to improve its screen understanding capa-
bilities by using its interactions to validate and retrain the screen
similarity model. A more accurate screen similarity model allows
our crawler to more reliably determine which app screens it has
already visited in an app, and thus increase its exploration effi-
ciency. Screen similarity models have also been used in other types
of software engineering applications, such as processing mobile
app usage videos [9], automated software testing [26, 27], and au-
tomated storyboard generation [7]. Feiz et al. note that due to their
labeling technique, their dataset contains more examples of new-
screen pairs than same-screen pairs. We mined additional examples
of same-screen pairs from our crawler’s recorded interactions to
augment the original training data and fine-tuned the initial model
by lowering the learning rate by a factor of 10. Compared to a
baseline condition where the screen similarity model was trained
using the unmodified dataset (with the same lowered learning rate),
we found that the augmented dataset led to consistently better
performance.
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Figure 7: Performance of draggability over time. Similar the
tappability model, the draggability model improves the most
during the first crawl epoch and the rate of improvement
plateaus afterward. The hybrid strategy crawler achieves the
highest final F1 score of 0.797, and the uncertainty sampled
crawler has the lowest F1 score of 0.770.

4.3.1 Data Generation. We do not introduce a new interaction-
based heuristic for collecting labels for screen similarity. Instead,
we re-use the data captured from the tappability and draggability
heuristics. Both heuristics take two screenshots before initiating an
interaction to identify animated or dynamic regions of the screen
that could cause false positives for tappability and draggability
detection. Yet these same examples can also be used to find examples
of false negative predictions from our screen similarity classifier.
We assume that the pre-interaction screenshots belong to the same
screen, since any visual variation between them is not caused by a
user input. We make similar assumptions about data collected from
the draggability heuristic, since the final screenshot is taken before
the drag gesture is completed (i.e., before the finger is released
from the screen) and is unlikely to result in a new screen. We use
these sources to create a dataset of screenshot pairs of same-screen
pairs, and we ran our existing screen similarity model to search
for incorrect predictions, which can be used to re-train the model.
Based on this process, we mined approximately 2000 new examples
from each epoch.

4.3.2 Model Implementation. The screen similarity model was ini-
tially trained on a dataset that contained both examples of positive
(same-screen) and negative (different-screen) pairs, which made it
possible to optimize using a contrastive margin loss [13].

At a high level, the model maps screenshots into an embedding
space, and the loss ensures that similar screens are close together
(i.e., have a distance less than amargin value) while different screens
are further apart.

L𝑠𝑖𝑚 =

{
| |Δℎ | |2 if 𝑠1 = 𝑠2
max(0,𝑚 − ||Δℎ | |2) otherwise

(1)

To fine-tune the model, we use the same training objective but
decrease the learning rate to 𝑙𝑟 = 1𝑒 − 5, which is ten times lower
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Figure 8: Architecture of our screen similarity model. The
screen similarity determines if two input screenshots are
variations of the same UI by i) featurizing each screenshot
using a CNN ii) comparing their Euclidean with a threshold
value.

than the original value used to train the model. We initially tried
to use the newly-mined same-screen pairs to fine-tune the model
without mixing it with the original dataset. However, this was
unsuccessful, since only focusing on the “similarity” term (𝑠1 =

𝑠2) resulted in a failure case where the model learns to map all
screenshots to the same point in embedding space, since it is only
penalized if similar screens are far away but not if dissimilar screens
are close together. Thus, we directly “mixed" in the newly mined
examples with the rest of the original dataset, which consisted
of 800,000 labeled pairs.

4.3.3 Performance Evaluation. We measured performance with re-
spect to the original dataset’s evaluation split because our generated
data only contains same-screen pairs, which makes it impossible to
compute precision. The results are shown in Figure 9. Because the
screen similarity model doesn’t affect the crawler’s selected actions
(e.g., attempted taps and drags), we only evaluated our approach
on data from the Random crawl. Overall, we found that using the
crawler-generated dataset to fine-tune the model led to small but
consistent improvements in performance over time. The screen
similarity model improved from an initial F1 score of 0.636 to a
final F1 score of 0.663. Despite being trained on the original dataset,
the baseline model also improved due to the lowered learning rate.
A common practice in neural network training is to decrease the
learning rate after performance plateaus, which may allow the
model to continue improvement. The baseline model improved the
initial model to a final F1 score of 0.659.
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Figure 9: Performance of screen similarity over time. We
compared i) adding training examples mined from crawls
and ii) a baseline of continuing model training on its original
dataset with a lower learning rate. The crawler-augmented
dataset achieved a final F1 score of 0.663 while the baseline’s
final F1 score was 0.659.

If the crawler were to run indefinitely, it would need some mech-
anism to ignore a subset of the collected data to avoid eventual data
imbalance due to the collection of only same-screen pairs. Several
possible techniques exist for consolidating and distilling datasets to
retain the most informative samples [32, 33, 47]. While we believe
these methods are applicable, we leave this aspect of validation to
future work.

5 DISCUSSION
Our experiments revealed that visual UI models could effectively
be trained and improved through automated, continual interaction.
In this section, we discuss i) the performance of our specific Never-
ending UI Learner implementation, ii) other types of interaction-
based learning, and iii) the benefits applying these strategies over
very long or potentially indefinite period of time

5.1 Never-ending UI Learner Performance
In this paper, we conducted a series of experiments that evaluate
the Never-ending UI Learner and and its ability to automatically
learn UI semantics. Our experiments investigate two key questions:
i) what is the best way for an automated crawler to learn about
UIs? and ii) how long would it need to run?

Crawling Strategy. Our experiments focused on three crawl-
ing strategies for exploring mobile apps: i) randomized crawling,
ii) uncertainty sampling, and iii) a hybrid strategy. Overall, the
random strategy consistently led to strong performance in all our
experiments. We initially hypothesized that uncertainty sampling,
an active learning technique that improves sampling efficiency by
prioritizing examples with low model confidence, would let the
model to learn more efficiently and effectively. However, because
our crawler updated its models (which are used to compute the

prediction confidences) every epoch instead of after each sample
(as is often done in applications where uncertainty sampling is
employed), it led to imbalanced data collection during subsequent
crawls, which decreased performance. The hybrid crawler alter-
nated between random and uncertainty sampling strategies, which
allowed it learn from low-confidence predictions while also correct-
ing the distribution shift induced by batched uncertainty sampling.
Overall, it led to similar performance to pure random crawling,
although it was less consistent. In the draggability task, it initially
decreased performance but experience rapid improvement after-
ward. Ultimately, our experiments do not reveal a clear choice, and
we believe there is room for exploring additional strategies [12]
and longer-term evaluation, which we leave to future work.

Performance over Time. Even though our crawler is meant to
run indefinitely, our experiments focused on a relatively short pe-
riod of five crawl epochs. Each crawl epoch lasted approximately
half a week (clock time) when parallellized across multiple crawler
workers and consisted of approximately 500 device-hours of app
interaction, data post-processing, and model training. Across all
experiments, the Never-ending UI Learner crawled for more than
5,000 device-hours, which was carried out over the span of approx-
imately one month.

Our results show that this window is sufficient to learn accurate
models purely from crawler-collected data (tappability and drag-
gability) or fine-tune existing models (screen similarity). Overall,
we found that models had rapid early learning followed by slower
improvement, which is consistent with empirical observations in
machine learning research that suggests an exponential relationship
between dataset size and model performance [41]. We believe these
small improvements are valuable, since their benefit can be magni-
fied when running over potentially very long periods of time and
allow the model to be continuously updated. We plan to continue
running the crawler, which doesn’t require human supervision,
to observe trends over longer periods of time and maximize the
potential of our automated learning approach.

Anecdotal Observations. Based on our experimentation, we found
several dimensions that affect the performance of never-ending
learning systems such as ours. We offer anecdotal observations that
may be useful for replication or implementing similar systems.

• Choosing examples. In this paper, we primarily explored two
methods (random and uncertainty-based) for selecting train-
ing examples. We found that random selection is a strong
baseline, and active learning approaches (e.g., uncertainty
sampling) can be effective with proper hyperparameters.
There is more to explore along this dimension, including the
use of crawler history to reduce sample redundancy, which
we observed in our crawled data.

• Retraining frequency. Re-crawling and re-training frequency
can affect the system’s performance changing the makeup
of the training data. The experiments in this paper were run
over the span of around one month with an update iteration
every 1-2 days, so the app changes that we witnessed were
primarily due to changes in dynamic content. We believe
that less frequent updates can be effective (e.g., monthly)
which could capture more substantial changes such as app
updates or newer design guidelines.
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• Evaluation data. We used a fixed evaluation split to directly
compare model performance over time. Using data from the
latest crawl may allow for more accurate estimation of real-
world performance; however, it is less straightforward to
compare models across epochs, since changes may either
have been caused by model performance or changes to val-
idation data. Finally, using a dynamic-sized validation set
could be useful if the models are deployed in scenarios where
performance on both old and new apps are important.

5.2 Learning from Interactions
Our work contributes the idea that automated interactions can
be used to generate datasets for model-based UI understanding.
Most existing datasets use human annotators and crowd work-
ers to produce labels for mobile UI datasets, such as UI element
bounding boxes, icon types, and screen similarity pairings. While
human labeling has been a de facto standard for creating datasets,
especially for domains where the data volume requirements for
self-supervised learning are not feasible, crowd worker-generated
annotations are known to be susceptible to errors and biases [8, 36].
Furthermore, many tasks implicitly encode a degree of subjectivity.
One such example is tappability prediction, where annotators use
their own judgment to decide whether a particular UI element in a
screenshot is tappable. Labels for such tasks are known to be noisy
in practice, and are often averaged or voted on from multiple crowd
workers, further increasing the time and cost of human-produced
labels [38]. In contrast, automated interaction-based learning can
significantly mitigate annotator biases, since labels are produced
through hypothesis testing. However, there may be cases where
encoding perceptual information into labels can be useful, such
as giving feedback to designers on perceived tappability. In other
cases, such as generating accessibility information, labels more
closely aligned with ground truth may be preferred. Understanding
the trade-offs between these methods and their impact on model
alignment is an opportunity for future work.

In our work, we showed that interaction-based learning can
be used to model element (tappability), container (draggability),
and screen-level (screen similarity) semantics in mobile UIs. For
our tested applications, we found that heuristics that operated
with knowledge of the entire interaction made label generation
relatively straightforward. However, highly accurate heuristics did
not always lead to highly accurate models since the model had to
make the same prediction with access to less data (i.e., only visual
information from a static screenshot). Some types of semantics were
more conducive to visual modeling than others. Our tappability
model achieved high classification performance, with an F1 score of
0.860. On the other hand, draggability was much harder to predict
from a screenshot (F1=0.797).

A natural question to explore is: what other types of semantics
can be learned through interaction? For example, related seman-
tics such as “press-and-hold” functionality can be discovered, and
textboxes can be better understood by observing what kind of soft-
ware keyboard (e.g., email or numeric keyboard) appears when it is
tapped on. Could this approach be extended to the problem of UI
element detection more generally, which currently relies heavily
on human annotation? There are many details that would need to

inferred, such as the size and shape of UI elements, and of course
the element type. Many more interactions would be needed from
the crawler to determine a bounding box for a given element, and it
might be difficult to infer complex element types, but a working sys-
tem that could do this might be able to learn about custom controls
and other non-standard elements that current models cannot deal
with today. Better automated understanding of UIs can not only
benefit downstream applications directly, but also collect better
data to train models.

5.3 Benefits of Never-ending Learning
Our crawler is meant to be run indefinitely, allowing it to accumu-
late examples and train over long periods of time. In our paper, we
experimented with several variables (e.g., training hyperparameters
and exploration strategies), which was only feasible by focusing on
a relatively short period of time for each condition (5 crawl epochs).
Even from this short time-span, we could train models for UI se-
mantics “from scratch” and observed consistent improvements to
performance afterwards, but we believe that our models are yet to
reach their maximum potential. In addition to its performance ben-
efits, never-ending learning allows machines to learn from diverse
sources of data. Never-ending learning can help machines identify
and learn from mistakes, especially those caused by shifts in data
distribution caused by trends in app usage and design trends.

Never-ending learning also introduces new challenges, like “cat-
astrophic forgetting,” the possibility of erasing previously learned
information by training on new data, and difficulties associated with
large, ever-growing datasets. In this paper, we conduct a prelimi-
nary exploration of methods to address some of these challenges,
such as uncertainty sampling, which can help prioritize certain
types of data. Our literature review uncovered many other possible
machine learning techniques that involve training the model train-
ing process [4, 18, 28, 37] or distilling the collected dataset relevant
samples [32, 33, 47]. We expect that they will be useful for scaling
and maximizing the performance of never-ending UI learning.

6 LIMITATIONS & FUTUREWORK
Our current implementation of a Never-ending UI learner is limited
and presents opportunities for future exploration.

First, our current crawler is implemented using a specific set of
tools and infrastructure customized for our target platform (iOS).
While we did not run experiments on other types of UIs (e.g., An-
droid, web-based interfaces), we expect our results to be general-
izable, since our approach does not rely on any platform-specific
metadata or APIs, and previous research has shown semantic over-
lap between mobile and web UIs [48]. Our experiments primar-
ily focused on free apps that did not require authentication (e.g.,
registering and making an account), which biased the set of UI
screens reached by crawling. We used manually-designed and veri-
fied heuristics for a small set of semantics for tappability and drag-
gability. We believe that many other aspects of UIs and interaction
can be formulated using similar methods. Another limitation of our
current experiments is that we did not investigate the effect of dif-
ferent randomized train/test splits, which could provide additional
insight into the robustness of our method. Because experiments
took roughly a month to complete, the time and compute costs
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for repeated trials would have been prohibitively high. However,
since our list of apps is sufficiently large and randomly shuffled,
we do not expect large variations in performance across different
randomized splits.

Personalized interaction traces collected over long periods of
usage can improve the performance of models for rarer, niche apps,
although a privacy-preserving approach would be needed (e.g., on-
device training). An alternative direction is to allow our crawler to
automatically learn interaction sequences to discover and label new
aspects of UIs, instead of executing manually-defined heuristics.
We expect future versions of our crawler to incorporate techniques
from related machine learning fields, such as reinforcement learn-
ing.

Finally, our crawler could benefit improved UI understanding
capabilities. First, our crawler’s primary representation of screens
that it visits is a list of UI elements, which are used to navigate and
discover other parts of the app. Amore effective way of representing
screens could lead to more efficient crawling [49]. For example,
since properties of list items are similar, the crawler could reduce
unneeded interactions by tapping on one list item and propagating
the label to others. Icon semantics [5, 6, 30] are also helpful for
inferring the result of certain interactions. For example, tapping
on a “camera" icon may open the system camera app, which would
disrupt the crawl. Since the goal of the crawler itself is to train such
UI models, we believe that integrating these additional models into
the never-ending learning framework is a natural next step.

7 CONCLUSION
In this work, we presented a technique for continuous extraction
and modeling of user interface semantics through interactions,
which we refer to as “never-ending learning of UIs.” We imple-
mented a mobile app crawler that downloads, installs, and crawls
thousands of apps to observe UI semantics and affordances in real-
world apps, and we use interaction-based heuristics to generate
large datasets for training three types of UI understanding models i)
tappability, ii) draggability, and iii) screen similarity. We found that
models trained in this way can be more accurate than those trained
from human-annotated screenshots and continue to improve with
access to more training examples. The highly automated nature
of our approach allows us to apply it indefinitely, with little to no
human supervision, which can maximize their performance and
utility to downstream applications.
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A ANNOTATION INTERFACE
Annotators used a web-based annotation interface to evaluate

the performance of the labeling heuristics. Figure 10 shows the
web-based interface used to label heuristic outputs.

B MODEL HYPERPARAMETERS
Table 1 shows the hyperparameters used to train the various

models in the Never-ending UI Learner.
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Figure 10: Figure shows the web-based interface used for the draggability heuristic evaluation, which displays the state of the
screen before the drag, during the drag, and a superimposed image. The interface used for tappability evaluation is similar,
except that the annotators watched a video clip instead.

Table 1: Hyperparameters of the models used in the Neverending UI Learner.

Model Hyperparameter Value

Tappability Head Learning Rate 0.0005
Batch Size 32
Hidden Size 64
Num Layers 4

Draggability Head Learning Rate 0.00005
Batch Size 32
Hidden Size 64
Num Layers (Self-Attention) 1
Num Layers (Classifier) 1

Screen Similarity Learning Rate 0.00001
Batch Size 64
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