
Scout: Mixed-Initiative Exploration of Design Variations
through High-Level Design Constraints

Amanda Swearngin1, Amy J. Ko2, James Fogarty1

Paul G. Allen School1, The Information School2

University of Washington
Seattle, WA, 98195

amaswea@cs.uw.edu, ajko@uw.edu, jfogarty@cs.uw.edu

A B FE
Saved Designs

Discarded Designs

Feedback Menu
C

D

Figure 1. The workflow of Scout’s interface. Designers add elements to Scout’s interface through the widgets library (A). Designers create constraints
in a tree (B). Designers explore designs satisfying those constraints, give feedback (D) that appears as an annotation in the tree (C), and curate saved
and discarded designs in the designs exploration area (E). Designers can export a design to refine in their design prototyping software (F).

ABSTRACT
Although the exploration of variations is a key part of in-
terface design, current processes for creating variations are
mostly manual. We present Scout, a system that helps design-
ers explore many variations rapidly through mixed-initiative
interaction with high-level constraints and design feedback.
Past constraint-based layout systems use low-level spatial
constraints and mostly produce only a single design. Scout
advances upon these systems by introducing high-level con-
straints based on design concepts (e.g. emphasis). With Scout,
we have formalized several high-level constraints into their
corresponding low-level spatial constraints to enable rapidly
generating many designs through constraint solving and pro-
gram synthesis.

Author Keywords
User interfaces; design; prototyping.

ACM Classification Keywords
Human-centered computing→ Systems and tools for interac-
tion design

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

UIST ’18 Adjunct October 14–17, 2018, Berlin, Germany

© 2018 Copyright held by the owner/author(s).

ACM ISBN 123-4567-24-567/08/06. . . $15.00

DOI: https://doi.org/10.1145/3266037.3271626

INTRODUCTION
Variations are key in interface design. When a designer creates
multiple design variations in parallel, it results in higher qual-
ity design outcomes [7] and more diverse solutions [3]. When
designers compare these alternatives, they provide stronger cri-
tiques and make better decisions [6, 16]. However, designers
face several barriers in creating many, high quality variations.
First, it is hard to come up with a completely new idea and
avoid fixation [10]. Second, creating a design requires knowl-
edge of design and usability principles. It can be challenging,
especially for novices, to follow accepted design principles
with every variation. Finally, creating variations is still a man-
ual process that requires low-level resizing, restyling, and
relocating interface elements to produce design prototypes.

To aid designers in creating and exploring interface variations,
we introduce Scout, a mixed-initiative system that helps de-
signers explore many layout variations rapidly. A designer
using Scout expresses their desired interface elements and con-
straints between them, and Scout generates design variations
satisfying these constraints.

Scout uses techniques from program synthesis and constraint
solving to automatically generate variations satisfying de-
sign constraints. There is a rich history of the use of con-
straints for generating interface layout and graphic designs
[2, 8, 11, 18, 19, 20]. However, these tools primarily create
one solution at a time, and do not allow the user to control
specific attributes of the variations [15]. With Scout, the de-
signer can explore the entire space of potential solutions, and

https://doi.org/10.1145/3266037.3271626

can narrow down the potential solutions to those that satisfy
their design constraints. Additionally, in constraint-based lay-
out systems, interface properties are mostly through low-level
spatial constraints. For example, in Apple’s AutoLayout [9],
constraints are expressed as mathematical equations like "Ele-
ment1.Leading = Element2.Trailing + 8.0" which states that
the margin between Element1 and Element2 must be 8 pixels.
Such constraints are unintuitive and tedious to maintain for
designers. The ALE [20] automatically infers some low-level
constraints, however, still only outputs a single solution.

In contrast, Scout lets designers specify high-level constraints
(e.g., "The header should be the most visually salient element")
based on usability and visual design principles. Scout trans-
lates high-level constraints into low level spatial constraints,
and automatically generates designs satisfying them. Design-
ers define high-level constraints through Scout’s constraint
language which lets designers group related elements, and
annotate emphasized and deemphasized elements. Designers
explore and refine the designs through feedback constraints.

CONSTRAINT LANGUAGE
Scout allows designers to express high-level constraints based
on design principles. The goal is for designers to organize their
interface in a principled way, emphasize important elements,
and explore the space of possible designs through feedback.

Proximity, Repetition, and Emphasis
A key principle of interface design is to have a clear, organized
hierarchy [13]. The Structure Principle [4] states that inter-
faces should keep related things together and unrelated things
separate, which is motivated by Gestalt theory [12]. Scout lets
designers create proximity groups of related elements. Scout
then ensures these elements appear as a visually distinct group
in design variations (e.g. Figure 1).

A key usability principle is that elements should appear in
the order they are used for a task [14]. Scout lets designers
specify that the order is important or unimportant for a prox-
imity group. Scout maintains the elements in reading or task
order in each variation. A designer can also specify that an ele-
ment should appear first (e.g., a header) or last (e.g., a footer),
and Scout will only vary the positions of the unconstrained
elements in design variations.

Many interfaces also include repeating patterns of elements
(e.g., a card list). Scout allows designers to apply a repeat
group constraint which ensures that the layout of groups of
elements is kept consistent across repetitions. Scout automati-
cally infers and suggests to the designer when this constraint
can be applied to repeating patterns of elements.

Emphasis is a concept in graphic design [17] that has been
adapted to interface design. Emphasis design principles state
that interfaces should have a main focal point to let the user
know what to do next [1]. In Scout, designers can emphasize
and deemphasize important and unimportant elements. De-
signers can only emphasize one element or group of elements
to provide a main focal point. Scout will then emphasize
the element by increasing its size, and moving it towards the
center of the design which increases visual prominence [17].

Feedback on Designs
In Scout, designers explore and refine the set of designs
through feedback constraints. Scout allows several types of
feedback including global (e.g. "Use a 50 pixel layout grid"),
relational (e.g. "Keep the logo above the header."), element
(e.g. "Keep this element here."), and arrangement specific (e.g.
"Keep the layout of these elements horizontal.").

SCOUT USER INTERFACE WALKTHROUGH
Lucy is a UX designer, and is exploring designs for a Holly-
wood Walking Tours app. Lucy feels stuck, so she decides to
use Scout to help her explore design variations.

Lucy first imports her desired interface components into Scout
from her agency’s component library (Figure 1, A). Lucy adds
her elements to Scout’s interface through the constraints tree
(Figure 1, B) including a "Continue" button, a header, and a
few labels and tour images. She creates a proximity group
for the set of tour images and labels. Scout suggests that she
apply the "Repeat Group" constraint to the proximity group to
ensure the layout of the icon and label pairs is kept consistent
in the variations.

Lucy views her designs through the design exploration area
(Figure 1, E). Lucy saves a few designs she likes which appear
in the saved designs panel, and "throws away" several designs
into a discarded designs panel. Lucy prefers the designs that
use a 5 pixel layout grid, so she uses the feedback menu to tell
Scout to keep the layout grid at 5 pixels. Her feedback appears
as an annotation on the constraints tree (Figure 1, C). Now,
Lucy can request more designs exploring variations of designs
with a 5 pixel layout grid. Scout has marked several designs as
invalid by highlighting them with red diagonal stripes. Lucy
hovers her mouse over the invalid designs and Scout highlights
the conflicting annotations in the constraints tree.

IMPLEMENTATION
The interface elements, high-level constraints, and design feed-
back the designer creates in the Scout interface are translated
into a set of formalized constraints in a design synthesis en-
gine that uses Z3 [5] with a custom search algorithm. Scout
produces a set of x and y coordinates, height, and width for
each element as output which is displayed as a design canvas
in the Scout interface. Within Scout, we have formalized basic
design constraints (e.g, non-overlapping, stay-in-bounds) and
high-level constraints (e.g., emphasis and proximity grouping).
To produce good designs, we have formalized some graphic
design principles (e.g. alignment, balance, and symmetry),
and use them in a cost function to rank the designs. To give the
designer a more spatially diverse set of designs, we apply a dis-
tance metric and randomized ordering of variable assignments
in the constraint solver.

Currently, Scout can explore layout variations that change the
positions and sizes of elements to provide proximity grouping,
emphasis, and repeat groups. In the future, we plan to for-
malize more design principles into the solver, develop a more
sophisticated cost function to select high-quality designs, and
vary more properties of design (e.g., fonts, color schemes) to
diversify the variations.

REFERENCES
1. 2016. Emphasis: Setting up the focal point of your design

| Interaction Design Foundation. (2016).
https://www.interaction-design.org/literature/article/

emphasis-setting-up-the-focal-point-of-your-design

2. Alan Borning, Richard Kuang-Hsu Lin, and Kim
Marriott. 2000. Constraint-based Document Layout for
the Web. Multimedia Systems 8, 3 (oct 2000), 177–189.
DOI:http://dx.doi.org/10.1007/s005300000043

3. William Buxton. 2007. Sketching User Experiences:
Getting the Design Right and the Right Design.
Elsevier/Morgan Kaufmann. 443 pages.

4. Larry L Constantine and Lucy AD Lockwood. 1999.
Software for Use: A Practical Guide to the Models and
Methods of Usage-Centered Design. Pearson Education.

5. Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An
Efficient SMT Solver. Tools and Algorithms for the
Construction and Analysis of Systems (2008), 337–340.

6. Steven P. Dow, Julie Fortuna, Dan Schwartz, Beth
Altringer, Daniel L. Schwartz, and Scott R. Klemmer.
2012a. Prototyping Dynamics: Sharing Multiple Designs
Improves Exploration, Group Rapport, and Results. In
Design Thinking Research. Springer Berlin Heidelberg,
Berlin, Heidelberg, 47–70. DOI:
http://dx.doi.org/10.1007/978-3-642-31991-4_4

7. Steven P. Dow, Alana Glassco, Jonathan Kass, Melissa
Schwarz, Daniel L. Schwartz, and Scott R. Klemmer.
2012b. Parallel Prototyping Leads to Better Design
Results, More Divergence, and Increased Self-efficacy. In
Design Thinking Research. Springer Berlin Heidelberg,
Berlin, Heidelberg, 127–153. DOI:
http://dx.doi.org/10.1007/978-3-642-21643-5_8

8. Krzysztof Z. Gajos, Jacob O. Wobbrock, and Daniel S.
Weld. 2007. Automatically Generating User Interfaces
Adapted to Users’ Motor and Vision Capabilities. In
Proceedings of the 20th Annual ACM Symposium on User
Interface Software and Technology - UIST ’07. ACM
Press, New York, New York, USA, 231. DOI:
http://dx.doi.org/10.1145/1294211.1294253

9. Apple Inc. 2018. Building Adaptive User Interfaces -
Apple Developer. (2018).
https://developer.apple.com/design/adaptivity/

10. David G. Jansson and Steven M. Smith. 1991. Design
Fixation. Design Studies 12, 1 (jan 1991), 3–11. DOI:
http://dx.doi.org/10.1016/0142-694X(91)90003-F

11. Solange Karsenty, Chris Weikart, and James A. Landay.
1993. Inferring Graphical Constraints with Rockit. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems - CHI ’93. ACM Press,

New York, New York, USA, 531. DOI:
http://dx.doi.org/10.1145/169059.169528

12. Wolfgang Kohler. 1967. Gestalt psychology.
Psychological Research 31, 1 (1967), XVIII–XXX. DOI:
http://dx.doi.org/10.1007/BF00422382

13. William Lidwell. 2003. Universal Principles of Design.
(2003).

14. Jakob Nielsen and Rolf Molich. 1990. Heuristic
Evaluation of User Interfaces. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems - CHI ’90. ACM Press, New York, New York,
USA, 249–256. DOI:
http://dx.doi.org/10.1145/97243.97281

15. Peter O’Donovan, Aseem Agarwala, and Aaron
Hertzmann. 2015. DesignScape: Design with Interactive
Layout Suggestions. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing
Systems - CHI ’15. ACM Press, New York, New York,
USA, 1221–1224. DOI:
http://dx.doi.org/10.1145/2702123.2702149

16. Maryam Tohidi, William Buxton, Ronald Baecker, and
Abigail Sellen. 2006. Getting the Right Design and the
Design Right. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems - CHI ’06.
ACM Press, New York, New York, USA, 1243. DOI:
http://dx.doi.org/10.1145/1124772.1124960

17. Alex W White. 2011. The Elements of Graphic Design:
Space, Unity, Page Architecture, and Type. Skyhorse
Publishing, Inc.

18. Pengfei Xu, Hongbo Fu, Takeo Igarashi, and Chiew-Lan
Tai. 2014. Global Beautification of Layouts with
Interactive Ambiguity Resolution. In Proceedings of the
27th Annual ACM Symposium on User Interface Software
and Technology - UIST ’14. ACM Press, New York, New
York, USA, 243–252. DOI:
http://dx.doi.org/10.1145/2642918.2647398

19. Brad Vander Zanden and Brad A. Myers. 1991. The
Lapidary Graphical Interface Design Tool. In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems - CHI ’91. ACM Press,
New York, New York, USA, 465–466. DOI:
http://dx.doi.org/10.1145/108844.109005

20. Clemens Zeidler, Christof Lutteroth, Wolfgang
Sturzlinger, and Gerald Weber. 2013. The Auckland
Layout Editor: An Improved GUI Layout Specification
Process. In Proceedings of the 26th annual ACM
symposium on User interface software and technology -
UIST ’13. ACM Press, New York, New York, USA,
343–352. DOI:
http://dx.doi.org/10.1145/2501988.2502007

https://www.interaction-design.org/literature/article/emphasis-setting-up-the-focal-point-of-your-design
https://www.interaction-design.org/literature/article/emphasis-setting-up-the-focal-point-of-your-design
http://dx.doi.org/10.1007/s005300000043
http://dx.doi.org/10.1007/978-3-642-31991-4_4
http://dx.doi.org/10.1007/978-3-642-21643-5_8
http://dx.doi.org/10.1145/1294211.1294253
https://developer.apple.com/design/adaptivity/
http://dx.doi.org/10.1016/0142-694X(91)90003-F
http://dx.doi.org/10.1145/169059.169528
http://dx.doi.org/10.1007/BF00422382
http://dx.doi.org/10.1145/97243.97281
http://dx.doi.org/10.1145/2702123.2702149
http://dx.doi.org/10.1145/1124772.1124960
http://dx.doi.org/10.1145/2642918.2647398
http://dx.doi.org/10.1145/108844.109005
http://dx.doi.org/10.1145/2501988.2502007

	Introduction
	Constraint Language
	Proximity, Repetition, and Emphasis
	Feedback on Designs

	Scout User Interface Walkthrough
	Implementation
	References

