
Screen Correspondence: Mapping Interchangeable Elements
between UIs

Jason Wu, Amanda Swearngin, Xiaoyi Zhang, Jeffrey Nichols, Jeffrey Bigham
{jsonwu,aswearngin,xiaoyiz,jwnichols,jbigham}@apple.com

Login Page
Sign in with your email address to access your

account.

Email

Test App

Don’t have an account or forgot it?

Your account is used to access data across all your
devices.

Your email address is used to enable services when you sign in,
including backup which automatically backs up the data on your

devices. Your device’s identifier may be used to check eligibility for
special offers. For more information, see our terms of service.

Login Page

Don’t have an account or forgot your password?

Your email address is used to enable services when you sign in, including
backup which automatically backs up the data on your devices. Your

device’s identifier may be used to check eligibility for special offers. For
more information, see our terms of service.

Required

Required

Email

Password

Sign in with your email address to access
your account.

Input Screen Exemplar Inferred Semantics

Text_Instruction

Text_Title

Button_Back Button_Disabled

Input_Email

Input_Passwd

Button_Enabled

Text_Footer

Text_Footer

Button_Enabled

Input_Email

Text_Instruction

Text_Title

Button_Back Button_Disabled

Login Page
Sign in with your email address to access your

account.

Email

Test App

Don’t have an account or forgot it?

Your account is used to access data across all your
devices.

Your email address is used to enable services when you sign in,
including backup which automatically backs up the data on your

devices. Your device’s identifier may be used to check eligibility for
special offers. For more information, see our terms of service.

Image

Icon

Icon

Image

Unmatched

Figure 1: Screen correspondence produces a mapping of similar UI elements across two UIs that have related elements.

Screenshots are encoded using a multi-modal model that segments and featurizes UI elements. Mappings are generated that

link element pairs that have the same or similar functionality across UI screens.

ABSTRACT

Understanding user interface (UI) functionality is a useful yet chal-
lenging task for both machines and people. In this paper, we in-
vestigate a machine learning approach for screen correspondence,
which allows reasoning about UIs by mapping their elements onto
previously encountered examples with known functionality and
properties. We describe and implement a model that incorporates
element semantics, appearance, and text to support correspondence
computation without requiring any labeled examples. Through a
comprehensive performance evaluation, we show that our approach
improves upon baselines by incorporating multi-modal properties
of UIs. Finally, we show three example applications where screen

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
, ,
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/10.1145/1122445.1122456

correspondence facilitates better UI understanding for humans and
machines: (i) instructional overlay generation, (ii) semantic UI ele-
ment search, and (iii) automated interface testing.

KEYWORDS

user interface modeling, ui semantics, element correspondence

ACM Reference Format:

JasonWu, Amanda Swearngin, Xiaoyi Zhang, JeffreyNichols, Jeffrey Bigham.
2022. Screen Correspondence: Mapping Interchangeable Elements between
UIs. In .ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/1122445.
1122456

1 INTRODUCTION

Understanding how user interfaces (UIs) can be operated to achieve
some goal can be challenging for both machines and humans, es-
pecially those who are less tech-savvy. While automated systems
in the right circumstances can provide useful assistance [62, 63] or
automatically complete the task themselves [34, 36], people can be
hindered or completely blocked by apps that do not provide neces-
sary metadata, such as the view hierarchy. A promising approach
involves inferring UI functionality solely from the pixels rendered

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

, , Wu et al.

to the screen, but to date this method has primarily been useful
for identifying the location and type of typical UI elements [65]
and not higher-level semantics. For example, these algorithms can
identify that a screen has a button that contains the text “Login,” but
are unaware of the higher-level concept of logging in to a service,
and they cannot infer what the role of this button would be in that
process.

There are many higher-level semantics in user interfaces (e.g., lo-
gin, account registration, shopping carts), which would correspond
to an enormous number of classes if we attempted to use a classifier
to predict their occurrence. Instead of making class predictions, an
alternate approach to data inference involves directly comparing
inputs to previously encountered examples with known properties.
Studies on human [55] and machine [56] learning suggest that di-
rect comparison is a useful tool, especially when relevant examples
are available in the form of analogies [4, 24] or templates [20, 22].
This concept can be highly effective for UIs, as many belong to the
same app or are constructed to serve a similar purpose. For example,
knowledge of how an app screen was previously interacted with by
an app crawler or automated UI tester could aid in producing more
robust and consistent results when visited again. Similar inferences
can also be made for related screens from different apps, such as
by determining that a button with the label “Login” in a new app is
likely used to submit a login request because that is how a similar
button is used in a known app.

In this paper, we pose the problem of screen correspondence to
map interchangeable elements between two UI screenshots (Figure
1). We introduce a multi-modal transformer model for detecting, fea-
turizing, and matching UI elements. Our approach is unsupervised,
which allows it to work without a large dataset of labeled examples,
which could be costly and time-consuming to collect. In a perfor-
mance evaluation with strong baselines, we compare our approach
to existing correspondence algorithms used in computer vision
(CV) and heuristics such as schema-matching. Our results indicate
that our multi-modal model outperforms all existing baselines.

We describe and implement three example applications that
show the utility of screen correspondence for humans and ma-
chines to understand UI functionality. We create an application
to generate instructional overlays by transferring high-quality
human-authored coach marks (a type of instructional label) from
one screen to another of the same category (e.g., two registration
screens). To support UI design search and exemplar-based explo-
ration, we used ourmodel to index a large dataset of UI elements

and screens. Finally, we built a system to aid an automated app

crawler by identifying mappings between the elements of screens
from different runs.

To summarize, we make the following contributions:

• We introduce screen correspondence as a method of mapping
interchangeable elements between UI screens from their
screenshots.

• We describe a machine learning approach to generating cor-
respondence between two UI screenshots, and we show it
outperforms existing baselines.

• We show the utility of screen correspondence in three ex-
ample applications that improve both human and machine
understanding of UI functionality.

2 RELATEDWORK

Our work is related to recent work in understanding user interfaces
from their pixels, and also a variety of methods for understanding
applications in terms of their many screens. We also overview
machine learning solutions to correspondence problems in other
domains, such as computer vision and natural language processing.

2.1 Predicting Screen Semantics

Computational representation of user interfaces are useful for many
downstream tasks, such as design assistance [32, 39], accessibility
improvement [65], and task-oriented systems. Screen Recognition
[65] generates accessibility metadata of a UI from screenshots using
an object detection model and heuristics. Screen Parsing [60] gener-
ates structured UI models from screenshots of UIs. Several models
[6, 15, 41, 64] have also been trained to predict the semantics of
unlabeled icons found in mobile apps. These models can be applied
to improve the accessibility of mobile apps, either as a tool during
design time or as an automated system that repairs existing apps
at runtime. Most of these models map UI elements to a pre-defined
set of classes (e.g. UI element and icon type), which may exclude
less common components [7].

An alternative is to train models using self-supervision [9, 18, 35],
which allows them to take advantage of larger unlabeled datasets.
Screen2Vec [35] and other pixel-based autoencoders [9, 39] map UIs
to fixed-length embedding vectors which can be used to represent
semantic properties. The Pixel-words model [18] employs a trans-
former model architecture and masked training objective based on
prior work in NLP [11]. Our work builds upon these approaches to
train a model for identifying UI element correspondences between
screens.

2.2 Multi-screen Understanding

While many automated UI systems can benefit from understanding
the semantics of a single screen, screens are rarely used in isolation.
Any task or interaction trace requires reasoning about multiple app
screens and how they are related to each other.

StoryDroid is a system that extracts a storyboard of Android
apps from APK files as an “App Transition Graph” [8]. ActionBert
[23] models the relationship between two consecutive UI screens
by predicting, among other things, which UI element was tapped on
the first screen to reach the second (i.e., link component prediction).
Longer sequences of touch interactions have also been modeled to
better understand user behavior and app usage [31, 69].

A particular problem that many multi-screen systems aim to ad-
dress is identifying whether two screens are instances of the same
UI, a problem which we refer to as “screen fingerprinting.” NEAR
[61] detects near-duplicate pages on the web using a combination
of visual and DOM-based features. Prior work [14] used super-
vised learning to predict the relationship and transitions between
screenshots by, among other things, classifying whether inputs
were different instances of the same screen (e.g., a news app with
dynamic content).

Screen fingerprinting is useful for comparing screens to known
examples; however, finer grain mappings (e.g., element-level finger-
printing) can result in higher fidelity comparisons and additional
benefits. Bricolage [30] is a system that renders the content of one

Screen Correspondence: Mapping Interchangeable Elements between UIs , ,

web page using the style and layout of another. It employs a su-
pervised element matching model that featurizes web elements
based on their DOM representation and was trained on a dataset of
human-generated mappings. Interaction proxies [67] rely on a set
of equivalency heuristics to identify UI components and structures
found in Android view hierarchies to facilitate accessibility repair.

Our work is related to these approaches in multi-screen un-
derstanding and specifically element fingerprinting. While many
previous examples relied heavily on the availability of a structured
UI representation (e.g., DOM, view hierarchy) and were trained on
labeled data, our approach requires only screenshots of related apps
with optional labels.

2.3 Machine Learning of Correspondence

Machine learning has been used to learn correspondences in other
domains, such as computer vision (CV) and natural language pro-
cessing (NLP), which are closely related to our approach.

A longstanding problem in CV is inferring accurate correspon-
dence of objects from different images. Homography estimation
[21] involves finding a mapping, either sparse or dense, or a trans-
formation matrix that describes perspective changes in two images
of the same object or scene. Optical flow [25] applies a similar
concept to finding mappings between consecutively taken images.
A common approach involves computing appearance descriptors
(keypoints), then creating amapping that optimizes the global corre-
spondence [16, 38]. Recent work [1] has extended these approaches
using learned semantic features to infer correspondence between
images of inter-class or inter-domain objects.

Correspondence learning has also been useful for many tasks in
NLP such as pronoun co-reference resolution and commonsense rea-
soning, both of which rely on modeling correspondences between
words to resolve ambiguities [28, 33, 59]. Language translation
and understanding, particularly for low-resource languages, ben-
efit from learning word alignments to higher-resource languages
[12, 47]. Finally, other types of conditional natural language gen-
eration have benefited from learning alignments between words
with similar meanings [2, 48].

Screen correspondence is related to many machine-learning
driven approaches to identifying correspondence. Our transformer
model builds upon many of these approaches by combining visual
information and word-alignment techniques to produce screen cor-
respondence. In our evaluation, we compared our system to several
baseline techniques from the CV and NLP literature. We show that
by incorporating multiple sources of information, our model gen-
erates better representations for UI elements, which leads to more
accurate correspondence predictions.

3 SCREEN CORRESPONDENCE

We define screen correspondence as the task of mapping interchange-
able UI elements between two UI screens. While matching UI ele-
ments between screens may seem simple, it is a complex problem
(especially from pixels alone) with many practical use-cases. Pre-
vious work relied on mappings to retarget UIs [30], provide help
[62, 63], assist design [3], and test GUIs [5] and specifically called
for more robust matching to improve performance.

We primarily consider cases where twoUI screens are of the same
category (e.g., Login or Registration) but from different apps (i.e.,
intra-class examples). This is challenging because UI element pairs
across such screen type pairs may not share similar appearance, text,
or position. Instead, the model must reason about the purpose of
each element in the context of its screen. To give intuition why even
a seemingly simple example is hard, consider two Login screens
(Figure 1): one containsUsername and Password fields, while another
contains Email and Password fields. Position and element type
information alone is unreliable for matching, since the text fields
may have different sizes or appear at different locations on each
screen. Appearance information alone is also noisy for matching,
since the text fields may have different visual themes. State-of-the-
art text encoders, even those trained on phrases, are unreliable
(e.g., most text models would produce a higher similarity score for
Username and Password than Email).

To detect UI element correspondences between different UI
screens, we built a system that (i) automatically detects UI elements
and text from screenshots, (ii) generates multi-modal embeddings
for each element, and (iii) establishes mappings between individ-
ual UI elements with high similarity. Figure 2 shows a high-level
overview of our approach.

3.1 UI Element Detection

The first stage of our system identifies semantically relevant pieces
of information from a UI screenshot, such as UI elements and text.
The input is a bitmap and the output is a list of detected UI elements
and pieces of text.

We use a pre-trained object detection model from previous work
[60] that was trained to recognize UI elements in iOS app screens.
The pre-trained model uses the Faster-RCNN architecture [45] and
was trained on the AMP dataset [65], which is separate from the
main dataset used in this paper. It achieved a class-weighted mAP
score of 0.8. We use post-processing procedures, such as score-
based thresholding and inter-class non-max suppression (NMS), to
improve the quality of the output. Optical character recognition
(OCR) is performed using Tesseract [53], an open-source, off-the-
shelf OCR software package. We run OCR on regions of the screen
that correspond to text elements as detected by our element detec-
tor.

3.2 UI Element Encoder

Using the elements segmented from the screenshot, we generate
representations that encode properties useful for comparison. In
our work, we consider relative positioning, element/icon category,
visual appearance, and text, properties which we hypothesize to be
relevant to element semantics. We used pre-trained models to pre-
dict these properties (element detection [60] and icon type (“com-
mon icon classifier" from previous work [7])) from screenshots.
Note that the pre-trained models were trained on different datasets
(i.e., no sample overlap) than the ones used in our paper.

3.2.1 Modality Representations. We use off-the-shelf models to
generate modality-specific features for each element, then feed
their output into a screen transformer model, which combines and
learns further associations between them.

, , Wu et al.

U
I E

le
m

en
t D

et
ec

tio
n

e1

Sc
re

en
 T

ra
ns

fo
rm

er

e2

e3

e4

en

U
I Elem

ent Detection

e1 Screen Transform
er

e2

e3

e4

en

Edges denote embedding similarity
Edges w/ high similarity form correspondences

Correspondence Matching

Figure 2: Overview of our screen correspondence approach. Elements and text from two screenshots are first extracted using

UI element detection then featurized using a screen transformer model. Finally, a correspondence between UI elements are

generated from element pairs with highly similar embeddings relative to other candidates.

Screen Transformer

Element Label Embedding Appearance Embedding Text Embedding

Pos Embedding

e1

Element 1
Visual

Element 2
Visual

Element 3
Visual

Element 1
Label

Element 2
Label

Element 3
Label

el1

Element 1
Text

Element 3
Text

el2 el3 ea1 ea2 ea3 et1 et3

e2 e3

M
o

d
a
lit

y
P

o
o

lin
g

C
o

n
te

xt
u
a
l E

m
b

e
d

d
in

g

One embedding
per UI element

One embedding
per modality

Figure 3: Architecture diagram of our screen transformer model. Each modality-specific input is treated as separate inputs

to our transformer model, which implicitly aligns them based on their positional information. Note that elements may be

missing modalities (Element 2 in this example). After the per-modality inputs are processed by our transformer, we generate

element embeddings (i.e., one per element) by pooling together outputs corresponding to the same original element.

Positional information: Previous work [14, 18] encoded element
position as a simple concatenation of bounding box coordinates. We
hypothesized that relative position may be more effective, since UI
interactions such as scrolling, text flow, and dynamic content could
cause changes in absolute position but have less effect on relative
ordering. We adopted a relative positional encoding scheme used to
improve the performance of language models [49] that incorporates
pairwise distance when calculating the attention score between
two elements.

Element Category:We categorized elements based on their UI and
icon type. Our pre-trained element detector classifies elements into
12 categories, as defined by previous work [65]. Three of these can

be further delineated into sub-categories. We separate the Toggle
and Checkbox classes based on their selection state (e.g., Toggle on
and Toggle off). We also classified common icon types using a sep-
arate pre-trained CNN model [65]. In total, we consider 83 unique
categories of elements and represent them as one-hot vectors.

Visual Appearance: We featurized regions using the intermediate
representations of a proposal-based object detector. Similar ap-
proaches have also been used by visual question-answering models,
which also need to take into account multiple visual information [?
] Since our UI element detector is based off of a similar proposal-
based architecture, we retrieve the activations of the object pro-
posals corresponding to detected elements using the fc6 layer [52].

Screen Correspondence: Mapping Interchangeable Elements between UIs , ,

This approach to featurizing appearance is beneficial since it results
in a fixed-size representation for image regions without the need
to explicitly resize or crop them.

Text: Numerous embedding methods have been developed for
representing words, sentences, and documents. Sentence transform-
ers are transformer-based models for encoding variable-length text
into an embedding space representative of semantic meaning [44].
Since much of the text on UI screens is relatively short, we use a
variant specifically trained to encode phrases [58].

3.2.2 Transformer Model. To further enrich and learn associa-
tions between the modality-specific element representations, we
designed a model that generates a fixed-size embedding for each
detected UI element. Ourmodel is based on the transformer architec-
ture (Figure 3), which has been used for UI representation learning
[18, 23]. The modifications we described (e.g., relative positioning
and appearance features) are aimed at improving performance on
the correspondence task.

Because not all elements have the same attributes, e.g., not all UI
elements have text, we rely on the transformer’s attention mecha-
nism to implicitly align information. Each modality-specific repre-
sentation with the exception of position is first embedded with a
separate linear layer to a common size. Instead of creating one input
vector for each element by concatenating features from each modal-
ity, we create an input vector for each modality of each element. For
example, a login button could result in three input vectors for ele-
ment category, visual appearance, and text. All inputs are fed into a
series of stacked self-attention blocks, which results in one output
embedding for each original input vector. Finally, we use pooling
to recover the output embeddings associated with each original UI
element and compute their mean to incorporate information from
all of the modalities.

3.2.3 Unsupervised Training. We did not have access to labeled
data during the development of our model, so we used unsupervised
training to learn its parameters. Masked element prediction is a
training objective that requires the model to reconstruct an input
that has been corrupted by randomized masking (i.e., replacing a
portion of the input with 0’s). Previous work [54] has shown that
this training objective encourages the model to learn semantically
relevant representations since it must learn to associate masked
information with other sources of information.

The reconstruction loss was measured separately for all modal-
ities (element category, visual appearance, and text) then added
together to obtain the model’s total loss. L2-loss was used for re-
construction of visual and text features, and cross-entropy loss was
used for reconstruction of element category.

3.3 Correspondence Matching

After we used our screen transformer model to featurize UI ele-
ments on two screens, we perform a matching procedure to predict
correspondences between them. For a pair consisting of a source
screen with𝑀 elements and a target screen with 𝑁 , we construct a
𝑀 × 𝑁 cost matrix 𝐶 ∈ R𝑀𝑥𝑁 to represent correspondence scores.
The matching cost 𝐶𝑖, 𝑗 is computed using cosine similarity.

Several approaches have been used to generate correspondences
from cost matrices [47]. A simple approach of matching based solely

on highest cosine similarity may make suboptimal decisions when
one element has more than one likely match. In our final implemen-
tation, we formulated correspondence mapping as an optimization
problem that finds the assignment between two sets that results in
the lowest overall cost [29]. We employ this approach for match-
ing elements between screens, since elements are more likely to
be dissimilar. To reduce false positives, we employ additional pre-
processing and post-processing steps. Before running the best-cost
optimization, we prune unlikely matches from the cost-matrix so
that each element only considers its 𝑘 closest neighbors. After-
wards, we ignore matches where 𝐶𝑖, 𝑗 < 𝑐 . We tuned the values of
𝑘 = 5, 𝑐 = 0.4 based on manual examination of a small number of
examples. This approach is similar to approaches in text decoding
models that consider only the top 𝑘 most likely tokens, which have
been shown to generate higher quality output by reducing the effect
from low-probability outputs.

4 DATASET

We developed and trained our transfer model on two datasets of
app screens that were generated by manual crawling of popular
mobile apps: Crawls and Rico. The Crawls dataset, which was
used by prior UI modeling work [7], consists of 750,000 iOS app
screens from 6,000 apps and was collected by crowdworkers who
were instructed to manually explore mobile applications through a
remote interface that periodically captured screenshots and addi-
tional metadata of the current app screen. The Rico dataset [9] is
a publicly available dataset of 72,000 Android screens from 9,700
apps that was also collected by crowdworkers remotely operating
devices. We divided each dataset into training (70%), validation
(15%), and testing (15%) splits by their crawl ID, which corresponds
to which app was crawled.

4.1 Evaluation Dataset

While our training algorithm does not depend on labeled data
(i.e., unsupervised), we manually collected a small set of labeled
examples (900 pairs across 90 screens) from each dataset to evaluate
our system.

4.1.1 Data Collection. Our evaluation dataset consists of data from
9 types of screens that we hypothesized could have correspon-
dences: Media Player, In-App Purchases, Login, Permission Request,
Register, Pre-Login, Pop-up, Search, and Web Views. We initially
asked crowdworkers to categorize a set of screenshots outside of
the training split based on a criteria for each category. Unlike app
categories, which might be used to categorize apps (e.g., finance,
health, social media), we focused on screen categories, since both
a health app and a banking app might both contain a login screen
that could contain correspondences. For each of our two datasets,
we sampled a small number of screens from each category for cor-
respondence labeling (9 categories x 10 screens = 90 screens total).
The 9 categories that we chose do not cover all possibilities, but we
believe they constitute a reasonable subset. More detailed descrip-
tions and criteria of each category is available in the appendix of
this paper.

4.1.2 Data Labeling. We created a labeling interface to annotate
our small evaluation split. First, a randomly selected element was

, , Wu et al.

shown on a screen, and the interface displayed a prompt asking if
the element was likely to appear on other screens of the same type:
“Are elements of similar functionality likely to appear on other Login
screens?” If the user responded “Yes,” the application displayed a
prompt for a label: “What is the role of this element in the current
screen?” We built our interface to include auto-complete function-
ality to encourage labelers to identify correspondence categories
that could generalize across screens, e.g., “login button” instead
of “button to log into my credit card account.” The autocomplete
list was pre-populated with 5 choices for each category and was
auto-updated with novel descriptions. If a label was provided on
the first step, then the user was shown other screens from the same
category and asked to select elements with a similar role, if they
were present on the screens.

A drawback of this approach is that it is slow, since it requires
providing a role description before elements are matched. However,
we found the additional consideration of element role is useful for
reasoning about correspondences.

5 EVALUATION

We evaluate our model against several baselines and ablated ver-
sions of our model. Our results show that compared to heuristic
and traditional key-point methods used in CV, multi-modal trans-
former encodings lead to better correspondences. Furthermore, our
ablation experiments show that the architectural improvements we
made lead to modest performance gains.

5.1 Baselines

In this section, we describe the baselines used in our performance
evaluation. We focus primarily on other unsupervised approaches,
since our constraint was that we didn’t have any labeled data avail-
able for training. Similar supervised approaches exist [30], but
they depend on element-level annotations and access to underlying
source code (i.e., HTML).

For comparison, we chose a variety of baselines that include
keypoint-based methods used for image matching and heuristics
such as schema-matching. Our main constraint was that we did
not have large quantities of labeled data for supervised machine
learning methods, so we selected unsupervised techniques for com-
parison.

ORB: As a review, image correspondence relies on the compu-
tation of semantic features from regions of the image. Semantic
features, usually invariant to surface-level changes such as trans-
lation and scale, are first calculated for small, localized regions of
the image. When this process is repeated recursively, the receptive
field increases, and globally-aware features can be learned. ORB
[46] is a traditional CV approach to generating descriptor features.
We first computed ORB descriptors for each screenshot which re-
sulted in numerous keypoints at salient points of the image. Using
brute-force matching, keypoints from one image were matched
onto keypoints from another image based on descriptor similarity.
Finally, to translate keypoint similarity to UI element similarity, we
used an object detector to compute the boundaries of UI elements
and matched elements based on the number of matching keypoints
contained within them.

Neural Best Buddies: Neural Best Buddies (NBB) uses the internal
representations of a deep CNN to featurize andmatch image regions.
Like ORB, it also generates keypoint descriptors but uses activations
from a convolutional neural network (CNN). One advantage that
CNN features have over traditional methods is that learned features
can better correspond to semantic properties that the network was
trained on (e.g., image classification). To run our experiments, we
used the code released by the authors of the paper 1. The original
paper focuses on finding correspondences between “natural images”
and use a VGG-19 model [51] that was pretrained on ImageNet [10].
Since UI screenshots have different properties than images found
in ImageNet, we initially tried to train a CNN model better repre-
sentative of UIs using an unsupervised autoencoder objective due
to the lack of labels in our training set. However, we found the
autoencoder model did not produce good outputs, so we report
results using the pre-trained ImageNet model.

Schema-matching Heuristic: One drawback of keypoint-based
methods that we explored is that keypoints are generated using
the entire image as input and without knowledge of UI element
locations. Schema-matching is an approach that first considers each
predicted element as a discrete object, then uses its attributes (i.e.,
schema) to compare similarity to other candidates. We implemented
a heuristic that uses schema matching through incorporating the
predicted UI element/icon type by concatenating their one-hot class
predictions into a single vector and applying the same best-cost
matching algorithm [29]. More sophisticated schema-matchingmay
incorporate additional information, such as UI hierarchy (e.g., an
element that belongs in a list should be matched to another element
in a list). While possible to predict [60], we did not incorporate
hierarchical information since it requires complex techniques for
tree matching but expect it would perform similarly to [30], which
uses hierarchical information.

Screen Transformer Ablations: Our performance evaluation in-
cludes ablated variations of our main transformer model. Trans-
former models allow learning more sophisticated representations of
elements through data, which provides advantages over manually-
defined schemas. We evaluate several ablated versions of our model
to understand the performance impact of our architectural changes.
Specifically, the ablated versions of our transformers removes cer-
tain components that we hypothesized to improve correspondence
matching, such as relative positional embedding, visual appearance
information, and text. In addition, we evaluated the Pixel-words
transformer [18], which our model is based on, but we adjust the
number of element classes, layers, attention heads, and hidden di-
mensions to be the same as our other models. The Pixel-words
transformer also includes a “layout embedding" network which
featurizes the layout of UI using a semantic map which is fed into
an autoencoder. To summarize, the Pixel-words configuration (i)
considers categorical and text information, (ii) uses absolute posi-
tional encodings, and (iii) includes an additional layout embedding
component.

5.2 Results

5.2.1 Baseline Comparison. Our evaluation results (Table 1) shows
the benefit of our multi-modal model over simpler baselines. We

1https://github.com/kfiraberman/neural_best_buddies

https://github.com/kfiraberman/neural_best_buddies

Screen Correspondence: Mapping Interchangeable Elements between UIs , ,

Table 1: Performance of our approach and other baselines

for screen correspondence. Our approach leads to the best

performance, reaching an F1 score 0.61. We also included

ablated versions of our model without relative positional

embeddings, appearance features, and text features.

CRAWLS RICO

Model Configuration P R F1 P R F1

Screen Trans. 0.66 0.57 0.61 0.83 0.41 0.55
Screen Tran. (w/o Relative) 0.58 0.53 0.56 0.74 0.37 0.49
Screen Trans. (w/o Appearance) 0.74 0.44 0.55 0.77 0.38 0.51
Screen Trans. (w/o Text) 0.66 0.63 0.59 0.77 0.37 0.50
Screen Trans (Pixel-words) 0.70 0.49 0.58 0.83 0.22 0.35
Heuristic 0.48 0.59 0.53 0.80 0.32 0.45
ORB 0.25 0.17 0.20 0.63 0.21 0.31
NBB 0.22 0.15 0.18 0.58 0.17 0.26

Figure 4: Performance across different categories in the

Crawls (Top) and Rico (bottom) datasets using the full

Screen Transformer model configuration. The average clas-

sification performance was F1=0.61 on Crawls and F1=0.55

on Rico.

employ standard classification metrics to measure the accuracy
of element-to-element correspondences generated by our model.
Since elements in our evaluation dataset are labeled using their
ground truth bounding boxes instead of our element detector’s
predictions, we first match predicted detections to ground truth
elements using the best Intersection-over-Union (IoU) score. Due
to our labeling procedure where one element is highlighted at a
time, the examples in our evaluation set were only partially labeled,
meaning that screens contained only a randomly sampled subset
of all possible corresponding pairs. Our best model configuration
reaches an F1 score of 0.61. Screens in our dataset contained an
average of around 20 elements, so correct correspondence required

finding the best out of match out of all possible candidates. The
ORB and NBB baselines are based on keypoint-based matching,
which is commonly used in CV to compare images. Among them,
ORB performs the best, achieving higher correspondence accuracy
but performed poorly due to low recall. One possible reason is
that keypoints are generated at visually salient locations of the
image, such as edges and corners, and without any knowledge of
where UI elements are. Thus, some UI elements may not contain
many keypoints within them, reducing the quality of matches. The
schema-matching heuristic performed substantially better than
keypoint-based methods and reached high recall by directly using
the outputs of pre-existing models (i.e., element detection, icon
classification). Precision was lower, possibly due to the difficulty of
accurately matching ambiguous elements without knowledge of
additional context.

Our ablation experiments revealed that our modifications to the
base transformer architecture led to modest improvements in terms
of F1 score but also had other consequences for precision and recall.
For example, our model trained without appearance information
was the lowest performing variation but reached the highest preci-
sion score. We attribute these variations to the information encoded
in each modality and may warrant different configurations based
on intended use-case.

5.2.2 Performance across UI Categories. Figure 4 provides a more
in-depth breakdown correspondence by UI category. Our model
achieved the best performance on the Website View and In-App
Purchase categories and the worst performance on theMedia Player
and Pre-Login categories.

One major source of error for our model was the presence of
sub-categories within our dataset. For example, we manually ex-
amined examples from the Pre-Login and Login categories, which
received relatively low performance. We discovered a consider-
able difference between apps that used different authentication
providers, such as OAuth and Single-Sign-On (SSO). For example,
a “traditional” login screen might include text fields for entering a
username and password, but an app using a SSO provide (e.g., Sign
in with Apple) might only contain a button without any text fields.
We found that there was also variance within media player screens
– video players and music players had significant differences and
some media players were full screen while others were not. Since
our correspondence model uses contextual information (i.e., in-
formation from other elements on the same screen) and relative
positional encoding, this could significantly affect the computed
representation. One strategy to address this is the formation of
sub-categories with a more consistent set of elements e.g., creating
separate categories for traditional login screens and those with
other types of authentication.

5.2.3 Performance across Datasets. We evaluated all models and
baselines on both the Crawls and Rico dataset. Overall perfor-
mance between the two datasets were similar, although the Rico
models performed slightly worse (F1=0.55) than ones trained on
Crawls (F1=0.61). One possible reason for the performance dis-
crepancy is that Crawls is an order of magnitude larger and the
model was exposed to more variation during training time, which
is beneficial for unsupervised training techniques. While the full
transformer model is the best-performing configuration for both

, , Wu et al.

Table 2: Performance of our approach and other baselines

screen correspondence for same-screen pairs in the Crawls

dataset. Many configurations, including our model, reach a

maximum F1 score of 0.76. We attribute labeling noise and

the IoU element matching process used to assign predicted

element locations to ground-truth boxes.

Model Configuration P R F1
Screen Transformer 0.85 0.68 0.76
Screen Transformer (w/o Relative) 0.86 0.68 0.76
Screen Transformer (w/o Appearance) 0.87 0.66 0.75
Screen Transformer (w/o Text) 0.85 0.68 0.76
Screen Transformer (Pixel-words) 0.88 0.66 0.76
Heuristic 0.87 0.66 0.75
ORB 0.78 0.48 0.59
NBB 0.53 0.25 0.34

datasets, the relative performance ablated models were affected dif-
ferently. Notably, the Ricomodels without text and the Pixel-Words
model performed much worse, suggesting that its evaluation set
may have contained more text-heavy screens.

5.2.4 Correspondence between Same-screen Pairs. In addition to
evaluating our models on screens from different related apps (i.e.,
intra-class pairs), we also investigated performance on same-screen
pairs. Same-screen correspondence is useful for identifying the
same UI element across multiple versions of the same screen. For
example, an app’s appearance may change following an update or
from dynamically updated content (e.g., a news page loads content
from a remote source). Following prior work [14], we consider two
screenshots to be the “same” if they represent different instances
of the same underlying implementation, possibly with significantly
different appearance. Correspondence mapping can help guide au-
tomated systems such as crawlers to behave more consistently
in these situations. We randomly selected screen groups with the
same app ID as those in the testing split of our Crawls dataset, then
randomly sampled two screenshots from each group, resulting in
888 total pairs. Upon manual inspection, we found that some of
the sampled pairs had only minimal visual changes. To filter out
“easy pairs,” we constructed a heuristic that attempted to match
elements based only on bounding box location. If all elements in a
pair were successfully matched, we discarded the example, since it
meant that no significant dynamic change (e.g., scrolling, dynamic
content) occurred. After this process, the final dataset contains 607
examples. We did not repeat this for the Rico dataset because the
authors applied a heuristic to filter out repeated views of the same
screen [9].

Our observations and performance results (Table 2) show that
same-screen correspondence is generally higher. Since same-screen
pairs are usually more visually similar, the model can rely more
heavily on surface-level features and in many cases perform direct
matching, such as looking for recurring text. Many configurations,
including our model, reached a maximum F1 score of 0.76. Er-
rors from labeling noise and IoU element matching (e.g., matching
ground truth bounding boxes to predictions) may have established

an effective ceiling, since our element detection model introduced
errors (has a class-weighted mAP score of 0.8).

6 EXAMPLE APPLICATIONS

We describe three example applications that show the utility of
screen correspondence to human and machine understanding of UI
functionality. Generating and transferring a type of instructional
overlay called coach marks can help users navigate unfamiliar UIs
by mapping them to previously encountered ones of the same class.
UI search is useful for app designers to find how concepts are
expressed across apps (e.g., what are different ways of expressing a
search intent?). Finally, automated GUI testing can be made more
robust by accounting for variations in visual presentation between
different app versions without requiring platform-specific APIs or
metadata. These example applications are not meant to be novel, but
we believe they show that accurate screen correspondence allows
many existing systems to work under a wider range of conditions,
e.g., using pixel data alone or improved robustness to dynamic
visual changes.

6.1 Instructional Overlays

We used our model to improve users’ understanding of complex or
newly installed apps by creating an infrastructure that could be used
to crowdsource coachmarks for apps. Coachmarks are instructional
overlays that are sometimes shown to provide assistance to users
when an app is first launched, and can be helpful for exposing UI
functionality. While it is possible to automatically generate natural
language for describing screens [57] and widgets [37] using deep
models, they are often affected by surface-level appearance andmay
be prone to producing generic outputs [37]. Building a model that
produces natural language also introduces significant complexity
that can be similar achieved with a correspondence mapping. A
better approach might be to crowdsource users [43] or developers
to write coach marks for screens in a subset of apps, and then
apply our screen correspondence technology to map these coach
marks onto a much larger set of screens with similar purposes. This
idea builds on the template-based matching scheme of Yeh et al.
[62] for generating contextual help, and expands their idea beyond
same-screen applications to also intra-class usage.

We applied our model’s intra-class correspondence capabilities
to automatically transfer annotations from one screen to another
related app of the same category (Figure 5). We first populated a
small database of instructional text for elements from app screens
in one of the categories from our evaluation data. In a real imple-
mentation of this system, an interface would be created to allow
users to author new instructional text for screenshots that they up-
load. Each screen in the database was associated with its featurized
elements as a key, and each instruction in the database was associ-
ated with its element. Our current prototype is a proof-of-concept
implementation where the user can upload a screenshot image file
through a web interface. On the uploaded screen, we perform a
nearest-neighbor search to retrieve the screens in our database that
are most similar. If the distance is sufficiently close, we run our
screen correspondence matching, which also returns a “matching
cost.” If enough matches are discovered and the matching cost is

Screen Correspondence: Mapping Interchangeable Elements between UIs , ,

Exemplar Labeling

Generated Help Overlay
Figure 5: Coach marks are useful for uncovering functional-

ity in apps. High-quality natural language descriptions of UI

components can be difficult to generate, so we curated a small

number of labeled examples fromdifferent app categories. El-

ement descriptions from this labeled set are transferred onto

unseen app screens of the same type using the correspon-

dence mapping. Depending on the use-case, the exemplar

can be manually provided (e.g., developer wishes to label

many similar screens at once) or automatically retrieved (e.g.,
a help-generation app uses a separate classifier to find an

exemplar from a database of labeled screens.)

below a heuristically set threshold, we directly render the annota-
tions to the screenshot using image drawing APIs and display the
annotated image.

In a complete implementation, the matching and rendering algo-
rithms would be built into a mobile operating system and run on
the user’s mobile device so that it would not require the user to exit
their current app to use our tool. In the future, we plan to improve
the user experience and investigate ways that these overlays could
be surfaced contextually.

In this example, we show that accurate intra-class screen corre-
spondence can facilitate transferring coach marks, which can help

users discover new app functionality and documentation. Other pos-
sible applications of screen correspondence to improving end-user
usage include transferring more types of accessiblity meta-data,
example-based re-targeting of UIs [30] and using input redirection
techniques to improve the accessibility of UI components [66].

6.2 UI Element Search Engine

UI search can help app designers find how concepts are expressed
across apps and provide example starting points when designing
a new app. Previous work indexed databases of UI screens using
visual properties [3], structural properties [60], sketches [26]. We
focus specifically on returning relevant UI elements instead of
screens, and leverage our model’s intraclass matching abilities to
improve the search process.

We integrated our screen correspondence model into a UI search
engine to support tag-based search and exemplar-based refinement.
The implementation of our UI search engine is a web app that
indexed elements from 130,000 UI screens using a variety of meta-
data, including detected element classes, icon types, and text, which
are stored in a database. Our app features a search page, where
users can first perform an initial search by entering text or tags
in a search bar. Results are returned based on matching attributes
found in the property database. Matching elements are shown in
the context of their app screen and highlighted with a bounding box.
When a result is selected, users are brought to the element inspector
page, where users can examine the properties of all elements on
the screen.

One limitation of tag-based search is that it is difficult to specify
target properties that do not belong to the pre-defined set of tags.
For example, a “plus” icon displayed on the top or bottom of a list
may indicate adding to the list while a “plus” icon displayed next
to a list item is more likely to representing adding the item from
the list. It would be difficult to disambiguate between these cases as
they share the same tag. Thus, we used our correspondence model
to enable exemplar-based search refinement, which allows users to
“narrow in” on more specific results. To enable this functionality,
we computed embeddings for UI elements in our database and
stored this information into a vector data store which supports
fast approximate nearest-neighbor search. We added a “search for
similar items” button on the element inspector page, which finds
results with a high similarity to the target element according to the
cosine similarity metric. Figure 6 shows an example flow of our UI
element search engine.

6.3 Automated GUI Testing

Finally, we used our model to improve the robustness of automated
GUI tests using our model’s same-screen matching capability. Auto-
mated testing is useful for ensuring the quality of GUIs. Specifically,
visual-based methods can be employed in these systems to search
for targets based on their rendered appearance, which allows for
easier authoring of testing scripts and reduces the dependency of
testing frameworks on specific UI toolkits [5]. However, strong
reliance on visual similarity may lead to failures caused by change
in visual style, such as updated application theme or icons [5].

In such applications, the quality of UI element matching is impor-
tant for automated GUI testing because poor matching capability

, , Wu et al.

Tag-based Search Element Inspector Refine by Exemplar

Figure 6: An example usage flow of our UI element search engine. The user first searches for icon elements that contain the

“add” tag. The results page shows UI screens with a matching element highlighted (Left). The user selects a result screen where

an add button is placed on the top right of the screen. The inspection page provides details about element info and allows

searching for similar elements (Center). Another search query is run using the embedded element of interest. The new results

are similar to the query in that they are all located at the top right of the screen and they appear to be used for adding items to

a gallery (Right). This example shows how designers can start a search using natural language or tag-based queries then refine

the results based on exemplars.

Recorded Action Replayed Action

Figure 7: Automated UI testing techniques execute an interac-

tion trace (either manually pre-defined or automatically gen-

erated) to detect functional regressions, visual regressions,

and other unexpected behavior. Updated versions of apps

may lead to small changes in layout and visual appearance

and knowledge of same-screen correspondence can improve

the consistency and robustness of tests. This example shows

a automated application performing a previously recorded

action, despite the target’s appearance change.

can lead to a failure to replicate recorded interaction traces in a
scripted testing scenario, and repeated visits to the same screens in
a random crawler stress test example. As shown by previous work
on screen similarity [14], methods that rely heavily on surface-level
appearance may have high precision but low recall due to possi-
ble variations between UIs. We applied our screen correspondence
model to improve the robustness of these matches.

We built a prototype system that interacts with remotely con-
nected smartphone devices through a VNC interface. Our software
sends commands through this interface to simulate interactions,
such as clicking and swiping. We also include a “recording” mode

that allows a tester to record an interaction trace, during which all
of the screenshots and interactions are saved. When replaying the
interaction trace, the saved screenshots and interacted elements are
used to match the current state of the VNC output. Specifically, for
each step in the saved trace, we identify the UI element with which
the tester interacted, such as the button that was pressed. Then, on
the live VNC view, we find the corresponding element and apply
the recorded interaction to it, similar to previous work on tutorial
consumption [68]. Figure 7 illustrates how our automated tester nav-
igates an app where the appearance of a target element has changed.
Used in conjunction with traditional template-matching techniques,
which offer high precision but low recall, correspondence matching
can help improve the overall performance of automated testers.

7 LIMITATIONS & FUTUREWORK

Our evaluation shows that correspondences can be automatically
identified through machine learning and matching approaches.
Some types of screens are more likely to have correspondences de-
tectable by our system (e.g., Website Views and In-App purchases)
than others (e.g., media players). The required accuracy level de-
pends largely on the final application, since different use-case since
different performance attributes. For example, using correspon-
dences to generate contextual help (instructional overlays) may
result in a better experience if only very confident matches are used,
as incorrect instructions can lead to confusion and frustration from
the user. GUI testing and crawling is less tolerant to mistakes, since
an incorrect action can make it impossible to access the rest of an
application. On the other hand, UI design search is more forgiving,
since it can provide value if most of the returned elements are cor-
rect (does not need to be the top choice). Our current evaluation
does not account for the requirements of down-stream applications,
although based on the example applications we implemented, we
found them to provide acceptable performance. We plan to further
evaluate our system in down-stream applications.

Screen Correspondence: Mapping Interchangeable Elements between UIs , ,

A limitation of our current experiments is that they focus only
on mobile UIs that belong to a set of 9 categories that we identified.
These 9 categories do not cover all possibilities of app screens, but
they cover a considerable subset. Our model is likely to perform
better for complex app screens if given a small amount of annota-
tions to fine-tune on. Moreover, since we only use pixel information
as input to our model, we believe that our approach is likely to
generalize well to other types of graphical UIs that also represent
their output as pixels. In the future, we aim to replicate our exper-
iments on other types of graphical UIs with varying screen sizes
and shapes.

We see several opportunities to improve the performance of our
system. Since our system relies on several individual components,
it may be useful to quantify the performance of each separately.
We used a pre-trained element detector model that produced noisy
output for the correspondence matching. Previous work [60] has
shown that element detectors perform poorly on more complex
screens due to the increased number of elements and sometimes
miss smaller elements. Future work could investigate a screen cor-
respondence system that uses a more accurate element detector
model or accepts manual annotations as input. More advanced
matching techniques can also be employed, such those that consider
multi-scale correspondence, which first process smaller sub-regions
before merging their predictions globally. Separately, prior work
on image correspondence [27] has shown improved performance
by scaling images during training and inference. A similar idea
could be applied to UIs by first predicting their UI hierarchy [60]
and generating mappings for groups of elements. Our model could
also use different unsupervised pre-training objectives to help it
build better representations of UI elements for our matching task
[28, 50].

Our work focuses on mapping interchangeable elements with
similar functionality between UI screens, however there are other
relationships that can be modeled. Categorization of different rela-
tions in language analogies [19, 40] show that antonym, categorical,
and functional connections can enrich the expressiveness of lan-
guage and rhetoric. We plan to focus future modeling efforts on
identifying and inferring a wider range of similar relationships that
exist in UIs.

Finally, our work explores inferring UI functionality from a sin-
gle previously encountered example, yet we believe our approach
may extend to multiple examples [17]. For example, non-parametric
machine learning methods such as the k-nearest neighbors algo-
rithm often benefit from considering more than one example at a
time.

8 CONCLUSION

In this paper, we explore screen correspondence as a machine learn-
ing technique for inferring UI functionality by directly leveraging
previously encountered examples. We describe our model architec-
ture and training procedure that incorporates information about UI
semantics, appearance, and text when generating correspondence
mappings between screenshots. In a comprehensive evaluation with
strong baselines, we show that our approach outperforms corre-
spondence algorithms by leveraging multiple information sources
found in UIs. Finally, we show how three example applications of

screen correspondence: (i) transferring coach marks from related
apps, (ii) UI element search, and (iii) automated GUI testing. Broadly,
our work demonstrates the feasibility of learning UI semantics by
mapping to prior examples.

A MODEL HYPERPARAMETERS

Model Hyperparameter Value
Screen Transformer optimizer Adam

learning rate 1e-4
weight decay 1e-5
dropout 0.25
hidden size 256
num layers 4
num heads 4

We trained our models with early stopping and stopped training
when validation loss did not improve for 10 epochs. We imple-
mented our model using the PyTorch [42] and PyTorch Lightning
[13] frameworks.

B UI CATEGORY CRITERIA

We collected a small dataset of 9 screen categories for evaluation
of our model’s intra-class correspondence capabilities. We used the
following guidelines to categorize apps.

• Media Player - A screen that allows users to play media
content such as music or video. Usually contains controls
for adjusting playback, volume, and sharing.

• In-App Purchase - A screen that asks users tomake a purchase
for a subscription or to access some part of an app. Usually
contains buttons for making the purchase, dismissing the
screen, or signing up for a trial.

• Login - A screen that asks users to log into an app or service.
It may contain fields for entering username and password
or buttons for third party authentication services.

• Permission Request - A screen that asks users to enable some
permission, which are usually associated with security set-
tings such as location or camera access.

• Register - A screen that asks the user to create an account.
May contain a form to register or buttons for third party
authentication providers.

• Pre-Login - A screen that contains controls to access other
parts of the app either by logging in or registering for an
account. This usually comes before the login page.

• Pop-up - A screen with a pop-up or dialog model that is
displayed over other app content. Pop-ups may contain con-
trols for accepting or dismissing it. For pop-ups that ask for
permission or purchases, see other categories.

• Search - A screen for entering and submitting a search query.
May include a search bar and filtering controls.

• Website View - A screen where an app opens an external
website. May contain a URL bar and forward/backward con-
trols.

, , Wu et al.

REFERENCES

[1] Kfir Aberman, Jing Liao, Mingyi Shi, Dani Lischinski, Baoquan Chen, and Daniel
Cohen-Or. 2018. Neural best-buddies: Sparse cross-domain correspondence. ACM
Transactions on Graphics (TOG) 37, 4 (2018), 1–14.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2014. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473 (2014).

[3] Sara Bunian, Kai Li, Chaima Jemmali, Casper Harteveld, Yun Fu, and Magy Seif
Seif El-Nasr. 2021. VINS: Visual Search for Mobile User Interface Design. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–14.

[4] Joel Chan, Joseph Chee Chang, Tom Hope, Dafna Shahaf, and Aniket Kittur. 2018.
Solvent: A mixed initiative system for finding analogies between research papers.
Proceedings of the ACM on Human-Computer Interaction 2, CSCW (2018), 1–21.

[5] Tsung-Hsiang Chang, Tom Yeh, and Robert C Miller. 2010. GUI testing using
computer vision. In Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. 1535–1544.

[6] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guo-
qiang Li, and JinshuiWang. 2020. Unblind your apps: Predicting natural-language
labels formobile gui components by deep learning. In Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering. 322–334.

[7] Jieshan Chen, Amanda Swearngin, Jason Wu, Titus Barik, Jeffrey Nichols, and
Xiaoyi Zhang. 2022. Towards Complete Icon Labeling in Mobile Applications. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–14.

[8] Sen Chen, Lingling Fan, Chunyang Chen, Ting Su, Wenhe Li, Yang Liu, and Lihua
Xu. 2019. Storydroid: Automated generation of storyboard for Android apps.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
IEEE, 596–607.

[9] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jeffrey Nichols, and Ranjitha Kumar. 2017. Rico: A mobile app dataset
for building data-driven design applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. 845–854.

[10] Jia Deng,Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Imagenet:
A large-scale hierarchical image database. In 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 248–255.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[12] Chris Dyer, Victor Chahuneau, and Noah A Smith. 2013. A simple, fast, and
effective reparameterization of ibm model 2. In Proceedings of the 2013 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies. 644–648.

[13] WA Falcon and .al. 2019. PyTorch Lightning. GitHub. Note:
https://github.com/PyTorchLightning/pytorch-lightning 3 (2019).

[14] Shirin Feiz, Jason Wu, Xiaoyi Zhang, Amanda Swearngin, Titus Barik, and Jeffrey
Nichols. 2022. Understanding Screen Relationships from Screenshots of Smart-
phone Applications. In Proceedings of the 27th Annual Conference on Intelligent
User Interfaces. 1–12.

[15] Sidong Feng, SuyuMa, Jinzhong Yu, ChunyangChen, TingTing Zhou, and Yankun
Zhen. 2021. Auto-icon: An automated code generation tool for icon designs
assisting in ui development. In 26th International Conference on Intelligent User
Interfaces. 59–69.

[16] Martin A Fischler and Robert C Bolles. 1981. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Commun. ACM 24, 6 (1981), 381–395.

[17] Huazhu Fu, Xiaochun Cao, and Zhuowen Tu. 2013. Cluster-based co-saliency
detection. IEEE Transactions on Image Processing 22, 10 (2013), 3766–3778.

[18] Jingwen Fu, Xiaoyi Zhang, YuwangWang, Wenjun Zeng, Sam Yang, and Grayson
Hilliard. 2021. Understanding Mobile GUI: from Pixel-Words to Screen-Sentences.
arXiv preprint arXiv:2105.11941 (2021).

[19] Anna Gladkova, Aleksandr Drozd, and Satoshi Matsuoka. 2016. Analogy-based
detection of morphological and semantic relations with word embeddings: what
works and what doesn’t.. In Proceedings of the NAACL Student Research Workshop.
8–15.

[20] Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren, and Percy Liang. 2018. Gen-
erating sentences by editing prototypes. Transactions of the Association for
Computational Linguistics 6 (2018), 437–450.

[21] Richard Hartley and Andrew Zisserman. 2003. Multiple view geometry in computer
vision. Cambridge university press.

[22] Junxian He, Taylor Berg-Kirkpatrick, and Graham Neubig. 2020. Learning sparse
prototypes for text generation. Advances in Neural Information Processing Systems
33 (2020), 14724–14735.

[23] Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying Xu, Lijuan Liu, Nevan Wich-
ers, Gabriel Schubiner, Ruby Lee, Jindong Chen, and Blaise Aguera y Arcas.
2020. ActionBert: Leveraging User Actions for Semantic Understanding of User
Interfaces. arXiv preprint arXiv:2012.12350 (2020).

[24] Aaron Hertzmann, Charles E Jacobs, Nuria Oliver, Brian Curless, and David H
Salesin. 2001. Image analogies. In Proceedings of the 28th annual conference on
Computer graphics and interactive techniques. 327–340.

[25] Berthold KP Horn and Brian G Schunck. 1981. Determining optical flow. Artificial
intelligence 17, 1-3 (1981), 185–203.

[26] Forrest Huang, John F Canny, and Jeffrey Nichols. 2019. Swire: Sketch-based user
interface retrieval. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems. 1–10.

[27] Wei Jiang, Eduard Trulls, Jan Hosang, Andrea Tagliasacchi, and Kwang Moo
Yi. 2021. Cotr: Correspondence transformer for matching across images. In
Proceedings of the IEEE/CVF International Conference on Computer Vision. 6207–
6217.

[28] Vid Kocijan, Ana-Maria Cretu, Oana-Maria Camburu, Yordan Yordanov, and
Thomas Lukasiewicz. 2019. A Surprisingly Robust Trick for theWinograd Schema
Challenge. In ACL.

[29] HaroldW Kuhn. 1955. The Hungarian method for the assignment problem. Naval
research logistics quarterly 2, 1-2 (1955), 83–97.

[30] Ranjitha Kumar, Jerry O Talton, Salman Ahmad, and Scott R Klemmer. 2011.
Bricolage: example-based retargeting for web design. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. 2197–2206.

[31] Seokjun Lee, Rhan Ha, and Hojung Cha. 2018. Click sequence prediction in
Android mobile applications. IEEE Transactions on Human-Machine Systems 49, 3
(2018), 278–289.

[32] Luis A Leiva, Asutosh Hota, and Antti Oulasvirta. 2020. Enrico: A dataset for
topic modeling of mobile ui designs. In 22nd International Conference on Human-
Computer Interaction with Mobile Devices and Services. 1–4.

[33] Hector Levesque, Ernest Davis, and Leora Morgenstern. 2012. The winograd
schema challenge. In Thirteenth international conference on the principles of knowl-
edge representation and reasoning.

[34] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: creating
multimodal smartphone automation by demonstration. In Proceedings of the 2017
CHI conference on human factors in computing systems. 6038–6049.

[35] Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and Brad A Myers. 2021.
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–15.

[36] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Mapping
natural language instructions to mobile UI action sequences. arXiv preprint
arXiv:2005.03776 (2020).

[37] Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. 2020.
Widget captioning: Generating natural language description for mobile user
interface elements. arXiv preprint arXiv:2010.04295 (2020).

[38] Ce Liu, Jenny Yuen, and Antonio Torralba. 2010. Sift flow: Dense correspondence
across scenes and its applications. IEEE transactions on pattern analysis and
machine intelligence 33, 5 (2010), 978–994.

[39] Thomas F Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning design semantics for mobile apps. In Proceedings of the
31st Annual ACM Symposium on User Interface Software and Technology. 569–579.

[40] Hongjing Lu, Ying Nian Wu, and Keith J Holyoak. 2019. Emergence of analogy
from relation learning. Proceedings of the National Academy of Sciences 116, 10
(2019), 4176–4181.

[41] Forough Mehralian, Navid Salehnamadi, and Sam Malek. 2021. Data-driven
accessibility repair revisited: on the effectiveness of generating labels for icons in
Android apps. In Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering.
107–118.

[42] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[43] Vidya Ramesh, Charlie Hsu, Maneesh Agrawala, and Björn Hartmann. 2011.
ShowMeHow: translating user interface instructions between applications. In
Proceedings of the 24th annual ACM symposium on User interface software and
technology. 127–134.

[44] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings
using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

[45] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. Advances in
neural information processing systems 28 (2015), 91–99.

[46] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. 2011. ORB: An
efficient alternative to SIFT or SURF. In 2011 International conference on computer
vision. Ieee, 2564–2571.

[47] Masoud Jalili Sabet, Philipp Dufter, François Yvon, and Hinrich Schütze. 2020.
SimAlign: High quality word alignments without parallel training data using
static and contextualized embeddings. arXiv preprint arXiv:2004.08728 (2020).

[48] Abigail See, Peter J Liu, and Christopher D Manning. 2017. Get to the point:
Summarization with pointer-generator networks. arXiv preprint arXiv:1704.04368
(2017).

Screen Correspondence: Mapping Interchangeable Elements between UIs , ,

[49] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with
relative position representations. arXiv preprint arXiv:1803.02155 (2018).

[50] Ming Shen, Pratyay Banerjee, and Chitta Baral. 2021. Unsupervised Pronoun
Resolution via Masked Noun-Phrase Prediction. arXiv preprint arXiv:2105.12392
(2021).

[51] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[52] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv
Batra, Devi Parikh, and Marcus Rohrbach. 2019. Towards vqa models that can
read. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 8317–8326.

[53] Ray Smith. 2007. An overview of the Tesseract OCR engine. In Ninth international
conference on document analysis and recognition (ICDAR 2007), Vol. 2. IEEE, 629–
633.

[54] Hao Tan and Mohit Bansal. 2019. Lxmert: Learning cross-modality encoder
representations from transformers. arXiv preprint arXiv:1908.07490 (2019).

[55] Michael Tomasello. 2005. Constructing a language: A usage-based theory of
language acquisition. Harvard university press.

[56] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. 2016.
Matching networks for one shot learning. Advances in neural information pro-
cessing systems 29 (2016).

[57] Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and Yang
Li. 2021. Screen2words: Automatic mobile UI summarization with multimodal
learning. In The 34th Annual ACM Symposium on User Interface Software and
Technology. 498–510.

[58] Shufan Wang, Laure Thompson, and Mohit Iyyer. 2021. Phrase-bert: Improved
phrase embeddings from bert with an application to corpus exploration. arXiv
preprint arXiv:2109.06304 (2021).

[59] Jason Wu, Karan Ahuja, Richard Li, Victor Chen, and Jeffrey Bigham. 2019.
ScratchThat: Supporting Command-Agnostic Speech Repair in Voice-Driven
Assistants. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies 3, 2 (2019), 1–17.

[60] Jason Wu, Xiaoyi Zhang, Jeff Nichols, and Jeffrey P Bigham. 2021. Screen Parsing:
Towards Reverse Engineering of UI Models from Screenshots. In The 34th Annual

ACM Symposium on User Interface Software and Technology. 470–483.
[61] Rahulkrishna Yandrapally, Andrea Stocco, and Ali Mesbah. 2020. Near-duplicate

detection in web app model inference. In Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering. 186–197.

[62] Tom Yeh, Tsung-Hsiang Chang, Bo Xie, Greg Walsh, Ivan Watkins, Krist Wong-
suphasawat, ManHuang, Larry S Davis, and Benjamin B Bederson. 2011. Creating
contextual help for GUIs using screenshots. In Proceedings of the 24th annual
ACM symposium on User interface software and technology. 145–154.

[63] Ja Eun Yu and Debaleena Chattopadhyay. 2020. “Maps are hard for me”: Identify-
ing How Older Adults Struggle with Mobile Maps. In the 22nd international ACM
SIGACCESS conference on computers and accessibility. 1–8.

[64] Xiaoxue Zang, Ying Xu, and Jindong Chen. 2021. Multimodal Icon Annotation
For Mobile Applications. In Proceedings of the 23rd International Conference on
Mobile Human-Computer Interaction. 1–11.

[65] Xiaoyi Zhang, Lilian de Greef, Amanda Swearngin, Samuel White, Kyle Murray,
Lisa Yu, Qi Shan, Jeffrey Nichols, Jason Wu, Chris Fleizach, et al. 2021. Screen
Recognition: Creating Accessibility Metadata for Mobile Applications from Pixels.
In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
1–15.

[66] Xiaoyi Zhang, Anne Spencer Ross, Anat Caspi, James Fogarty, and Jacob O
Wobbrock. 2017. Interaction proxies for runtime repair and enhancement of
mobile application accessibility. In Proceedings of the 2017 CHI conference on
human factors in computing systems. 6024–6037.

[67] Xiaoyi Zhang, Anne Spencer Ross, and James Fogarty. 2018. Robust annotation of
mobile application interfaces in methods for accessibility repair and enhancement.
In Proceedings of the 31st Annual ACM Symposium on User Interface Software and
Technology. 609–621.

[68] Mingyuan Zhong, Gang Li, Peggy Chi, and Yang Li. 2021. HelpViz: Automatic
Generation of Contextual Visual Mobile Tutorials from Text-Based Instructions.
In The 34th Annual ACM Symposium on User Interface Software and Technology.
1144–1153.

[69] Xin Zhou and Yang Li. 2021. Large-Scale Modeling of Mobile User Click Behaviors
Using Deep Learning. In Fifteenth ACM Conference on Recommender Systems. 473–
483.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Predicting Screen Semantics
	2.2 Multi-screen Understanding
	2.3 Machine Learning of Correspondence

	3 Screen Correspondence
	3.1 UI Element Detection
	3.2 UI Element Encoder
	3.3 Correspondence Matching

	4 Dataset
	4.1 Evaluation Dataset

	5 Evaluation
	5.1 Baselines
	5.2 Results

	6 Example Applications
	6.1 Instructional Overlays
	6.2 UI Element Search Engine
	6.3 Automated GUI Testing

	7 Limitations & Future Work
	8 Conclusion
	A Model Hyperparameters
	B UI Category Criteria
	References

