
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

CSE Conference and Workshop Papers Computer Science and Engineering, Department of

1-1-2011

A Reformulation Strategy for Multi-Dimensional
CSPs: The Case Study of the SET Game
Amanda Swearngin
University of Nebraska-Lincoln, aswearng@cse.unl.edu

Berthe Y. Choueiry
University of Nebraska - Lincoln, choueiry@cse.unl.edu

Eugene C. Freuder
University College Cork, e.freuder@cs.ucc.ie

Follow this and additional works at: http://digitalcommons.unl.edu/cseconfwork
Part of the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in CSE Conference and Workshop Papers by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Swearngin, Amanda; Choueiry, Berthe Y.; and Freuder, Eugene C., "A Reformulation Strategy for Multi-Dimensional CSPs: The Case
Study of the SET Game" (2011). CSE Conference and Workshop Papers. Paper 178.
http://digitalcommons.unl.edu/cseconfwork/178

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/cseconfwork/178?utm_source=digitalcommons.unl.edu%2Fcseconfwork%2F178&utm_medium=PDF&utm_campaign=PDFCoverPages


A Reformulation Strategy for Multi-Dimensional CSPs:
The Case Study of the SET Game

Amanda Swearngin1 Berthe Y. Choueiry2 Eugene C. Freuder3

1ESQuaReD Laboratory 2Constraint Systems Laboratory
University of Nebraska-Lincoln, USA

{aswearng|choueiry}@cse.unl.edu

3Cork Constraint Computation Centre, University College Cork, Ireland
e.freuder@4c.ucc.ie

Abstract
In this paper we describe a reformulation strategy for solving
multi-dimensional Constraint Satisfaction Problems (CSPs).
This strategy operates by iteratively considering, in isolation,
each one of the uni-dimensional constraints in the problem. It
exploits the approximate symmetries identified on the domain
values in order to enforce the selected constraint on the sim-
plified problem. This paper uses the game of SET, a combina-
torial card game, to motivate and illustrate our strategy. We
propose a multi-dimensional constraint model for SET, and
describe a basic constraint solver for finding all solutions of
an instance of the game. Then, we introduce an algorithm that
implements our reformulation strategy, and show that it yields
a dramatic reduction of the search effort. Our approach sheds
a new light on the dynamic reformulation of CSPs, leading
the way to new strategies for effective problem solving. We
use the game of SET as a toy problem to illustrate our strat-
egy and explain its operation. We believe that our approach is
applicable to more complex domains of scientific and indus-
trial importance, and deserves thorough investigations in the
future.

1 Introduction
Multi-dimensional Constraint Satisfaction Problems (CSPs)
were introduced in (Yoshikawa and Wada 1992) and have
been shown to model many applications of practical im-
portance such as resource allocation and configuration. In
a multi-dimensional CSP, the domains of all variables are
identical and the domain values are specified according to a
set of domain dimensions (i.e., attributes). The constraints
in the problem that apply to a single domain dimension
are said to be uni-dimensional, otherwise they are multi-
dimensional. In this paper, we propose a general reformu-
lation strategy for solving multi-dimensional CSPs that re-
duces the cost of problem solving by facilitating the dis-
covery of approximate symmetries. Our strategy, shown
in Figure 1, operates on a multi-dimensional CSP by it-
eratively enforcing each uni-dimensional constraint on the
corresponding dimension of the domain while ignoring all
other domain dimensions and constraints. Ignoring all but
one constraint allows one to identify, in the relaxed prob-
lem, symmetries that do not hold in the original prob-
lem (Freuder and Sabin 1995; 1997). Such approximate
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Exploit approximate   symmetries to enforce Cn  

Figure 1: A reformulation strategy for multi-dimensional CSPs.

symmetries can be exploited to reduce the computational
cost of enforcing the constraint on the relaxed problem.
Each step in Figure 1 may discover unsolvability or pro-
duce one or more simplified subproblems where the con-
sidered constraint holds. At the end of the process, any
constraint solver can be used to solve the resulting prob-
lem(s) by enforcing the remaining constraints. In (1995;
1997), Freuder and Sabin propose a similar approach that
uses symmetries based on neighborhood value interchange-
ability (Freuder 1991). However, their strategy differs from
ours as follows. The first simplified CSP is solved and its so-
lution is used to solve the original CSP. In our approach, we
foresee a sequence of reformulation steps, each enforcing
a single uni-dimensional constraint, where as Freuder and
Sabin described a single abstraction step (ref. ‘2. Reduce’ in
(Freuder and Sabin 1997)).

In this paper, we introduce a reformulation algorithm that
‘instantiates’ the general strategy of Figure 1 to solve the
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game of SET,1 a combinatorial card game. This game was
invented in 1974 by Marsha Jean Falco,2 a population ge-
neticist. She was inspired to create the game by her work
on determining whether epilepsy in German shepherd dogs
is inherited (Davis and McLagan 2003). In this paper, we
propose a multi-dimensional constraint model for SET that
has four uni-dimensional constraints. We describe a basic
constraint solver for solving an instance of the game. Our
solver is a simple backtrack search procedure with symme-
try breaking to find all the solutions of the instance. Our
reformulation algorithm for SET features the following com-
ponents: (1) Heuristics for selecting the uni-dimensional
constraint to consider at each step; (2) The use of meta-
interchangeability (Freuder 1991) as an approximate sym-
metry; and (3) A disjunctive decomposition of an intermedi-
ate CSP into subproblems with non-overlapping solutions as
a result of enforcing the selected uni-dimensional constraint.
Our reformulation significantly reduces the search effort.

We have implemented our approach in an online interac-
tive system for a single player and for two players. Nat-
urally, the value of the system is not in solving the game,
which, given its size, can be played by humans without the
help of a computer and is widely enjoyed by children and
mathematicians alike. However, we believe that our system,
when completed,3o will be useful to teach and demonstrate
problem-solving strategies to students in Computer Science
and to the general public. Beyond SET, our approach sheds
a new light on the dynamic reformulation of CSPs, lead-
ing the way to new strategies for effective problem solving.
We believe that our approach is applicable to more complex
domains of practical industrial importance beyond the toy
problem considered in this paper, which calls for future in-
vestigations.

This paper is structured as follows. Section 2 gives back-
ground information about the game, Constraint Satisfaction,
and multi-dimensional CSPs. Section 3 describes our model
and the search procedure for solving it. Section 4 intro-
duces our reformulation of the constraint model, and Sec-
tion 5 discusses our reformulation algorithm for SET. Sec-
tion 6 discusses our results. Section 7 presents our inter-
active interface for the game, available online on http:
//gameofset.unl.edu. Finally, Section 8 relates our
work to previous research, and Section 9 concludes this pa-
per drawing directions for future research.

2 Background
Below, we introduce the game and provide some back-
ground information about the modeling techniques.

2.1 The Game of SET

SET is a combinatorial card game consisting of a deck
of 81 playing cards. Each card is uniquely determined
by the values of four attributes, namely, the number of
objects drawn on the card and their color, filling, and

1http://en.wikipedia.org/wiki/Set_(game)
2http://www.setgame.com/set/history.htm
3A tool for displaying and explaining the reformulation steps

has yet to be developed.

shape. We denote these attributes by N , C, F , and
S, respectively. Each attribute takes one of three possi-
ble values as follows: {1,2,3} for the dimension number,
{red,green,purple} for color, {striped,full,empty} for fill-
ing, and {squiggle,oval,diamond} for shape, see as shown
in Figure 2. To play the game, twelve cards are dealt and

Number 1 2 3 
Color red green purple 
Filling 

Shape 

Figure 2: The four at-
tributes and their values.

Figure 3: A solution set.

placed, face up, on the table, visible to all players. The
players compete to find a collection of exactly three cards
that constitute what we call a solution set. For each of the
above listed attributes, the three cards of a solution set must
all have either the same value or different values for the at-
tribute. Figure 3 shows three cards forming a solution set.
In this example, the three cards differ on all four attributes.
The first player to identify a solution set picks it up, and
the cards are replaced with new ones from the deck. If all
players agree that a solution set cannot be found among the
twelve cards, three more are dealt and the game resumes.
The operation is repeated until a set is found. Usually, the
number of cards on the table quickly returns to twelve. The
maximum number of cards on the table at any one time is 21,
because any combination of 21 cards is guaranteed to have at
least a solution set. The proof was performed by exhaustive
computation (Davis and McLagan 2003). The game contin-
ues until all cards have been picked up or there are no more
sets among the remaining cards. The winner is the player
with the largest number of sets at the end of the game. For
the sake of space, our examples will show game instances
with only nine cards although the original game considers
twelve cards.

Obviously, a simple nested for-loop can ‘easily’ generate
all combinations of three cards. Each combination can then
be tested to check whether or not it satisfies the constraint.
Such an approach is shortsighted. Indeed, human beings
are unlikely to play the game by examining

(
12
3

)
= 220

combinations. Instead, it is fair to assume that they use
various modeling and reformulation strategies. It would be
equally ridiculous to use the simple nested for-loop to solve
industrial-size problems because the number of combina-
tions grows exponentially with the size of the problem and
few of the generated combinations satisfy the constraints.
For example,

(
12
3

)
= 220 combinations have on average 2.7

solutions, and
(
81
3

)
= 85320 combinations have only 1080

solutions. Thus, the simple nested for-loop is a strategy that
is neither interesting to teach a human player nor to use for
automation in an industrial setting.

2.2 Constraint Satisfaction Problems (CSPs)
A Constraint Satisfaction Problem (CSP) is defined by P =
(V,D, C) where V is a set of variables, D a set of domains,



and C a set of constraints. Each variable Vi∈V has a finite
domain Di∈D. Each constraint in C applies to a subset of
the variables (the scope of the constraint), and restricts the
combination of values that those variables can take at the
same time. A solution to a CSP is an assignment of a value
to each variable such that all the constraints are satisfied. In
general, solving a CSP requires finding one or all solutions.

2.3 Multi-Dimensional (CSPs) & Related Work
In (1992), Yoshikawa and Wada defined of a multi-
dimensional CSP as a CSP problem where:

1. All variables have the same domains,4 and

2. The domain can be specified by a multi-dimensional array
of values, where each value is described by a combination
of domain dimensions.

Further, they called a constraint defined over only one do-
main dimension a one-dimensional constraint, otherwise the
constraint is called a multi-dimensional constraint. As an
example, they discussed a classroom-scheduling application
where the classrooms are the variables and the domains of
the variables are combinations of teachers and time slots.5

3 Solving SET as a CSP
Below, we describe our constraint model and a search pro-
cedure for finding all solutions.

3.1 A Constraint Model for SET

Our constraint model has (only!) three variables correspond-
ing to the three cards of a solution set: V = {V1, V2, V3}. All
three variables have the same domain, which are the cards ci

placed on the table:

D1 = D2 = D3 = {c1, c2, . . . , ci},where i ∈ [3, 21].

We model the domain of a SET variable as a multi-
dimensional array indexed by the following attributes of the
playing cards: number, color, filling, and shape (see Fig-
ure 3). We also include the unique identifier id of a play-
ing card as a fifth pseudo-attribute: It allows our program to
uniquely identify each card. For the sake of clarity, we flat-
ten the multi-dimensional representation of a domain in the
two-dimensional array shown in Figure 4. We call this array
the domain table.

To represent the game of SET, we use a set of five
ternary uni-dimensional constraints on {V1, V2, V3}. The
constraints, for an attribute A where A ∈ {N,C, F, S} and
the card id, are defined according to the following templates:

A= : This constraint for the attribute A mandates that all
three variables take the same value.

A 6= : The all-different constraint for the attribute A requires
that no two variables take the same domain value.
4We will relax this condition, sometimes, during reformulation.
5We find rather contrived their artificially lumping together two

distinct objects, teachers and time, only to split them when the con-
straints are being enforced. We find that the game of SET is a more
natural illustration of a multi-dimensional CSP than the examples
provided in the original paper.

Attribute/val C1 c2 C3 C4 c5 c6 c7 c8 c9 

Number 

1 0 1 1 0 0 0 1 0 1 

2 0 0 0 1 0 0 0 0 0 

3 1 0 0 0 1 1 0 1 0 

Color 

r 1 1 0 0 0 1 0 1 1 

g 0 0 1 0 1 0 0 0 0 

p 0 0 0 1 0 0 1 0 0 

Filling 

f 1 0 0 1 1 1 1 0 0 

e 0 1 1 0 0 0 0 1 1 

s 0 0 0 0 0 0 0 0 0 

Shape 

s 0 0 1 0 0 1 0 0 0 

o 1 0 0 0 0 0 1 1 1 

d 0 1 0 1 1 0 0 0 0 

c1 c2 c3 

c4 c5 c6 

c7 c8 c9 

Figure 4: The domain table of a nine-cards example.

The constraints are:

1. N= ⊕N 6=: All three cards have the same number or they
have three different numbers.

2. C= ⊕ C 6=: All three cards have the same color or they
have three different colors.

3. F= ⊕ F 6=: All three cards have the same filling or they
have three different fillings.

4. S= ⊕ S 6=: All three cards have the same shape or they
have three different shapes.

5. id 6=: A solution set consists of three (distinct) cards.

The set of constraints is thus:

Co = {(N 6=⊕N=), (C 6=⊕C=), (F 6=⊕F=), (S 6=⊕S=), id 6=}
(1)

Figure 5 shows the constraint network of our model.

c1,c2,c3,…,c12 

C= ⊕ C≠ 

F= ⊕ F≠ 

S= ⊕ S≠ 

N= ⊕ N≠ 

id≠ 

c1,c2,c3,…,c12 

c1,c2,c3,…,c12 

Figure 5: The constraint network of the CSP of a SET instance.

Generally speaking, constraints can be specified either in
extension or in intension (i.e., as a predicate function on the
scope of the constraint). In extension, they are a list of either
acceptable tuples (supports) or forbidden tuples (conflicts).
Given the number of variables of the constraint model (i.e.,
three), implementing the constraint in intension seems to be
the simplest choice. Indeed, if the constraints were to be im-
plemented in extension, the constraints can be built once and
for all (domains size equal to 81) or dynamically every time
a CSP is formed to be solved (domains size in [12,21] for a
regular game). The number of supports to generate and store
for a domain of 81 cards is P (81, 3) = 81!

(81−3)! = 511920.
Otherwise, it is between: P (12, 3) = 12!

(12−3)! = 1320 and
P (21, 3) = 21!

(21−3)! = 7980. Although the number of tuples
of the remaining constraints are significantly smaller (less



than 33), it is obviously more cost effective to implement all
constraints in intension.

3.2 Solving the Constraint Model
We implemented a simple backtrack search to find all the so-
lution sets in a given configuration of any number of playing
cards. In order to prevent search from generating solutions
that can be obtained from other solutions by simple permu-
tation of the cards over the three variables, we have added to
the model a symmetry-breaking constraint based on lexico-
graphical ordering of the cards unique identifiers. Given that
the constraints on the attributes have two mutually exclusive
components (see Expression (1)), our backtrack search im-
plements a convenient combination of forward checking and
back-checking (Prosser 1993).

• The symmetry breaking constraint, the id 6= constraint,
and all equality constraints (A=) are enforced by forward
checking.

• The four all-different constraints (A 6=) other than id 6= are
enforced by back-checking.

The depth of the search tree is at most three, one for each
variable. When the first variable is instantiated, the only
checkable constraints are id 6= and the symmetry breaking
one. They are enforced by forward checking. After in-
stantiating the second variable, we can determine by back-
checking, for each of the remaining four attributes, which
of the two constraints (equality A= or inequality A 6=) holds
between the first two variables. The constraint that applies is
selected and the other one is “switched off.” At this point, if
any equality constraint on the current variable is “switched
on,” it is enforced by forward checking. The domains of
the third variable is consistent with all applicable equality
constraints. If any all-different constraint A 6= is applicable
(i.e., switched on), then back-checking is applied to consider
only consistent instantiations. Generally speaking, and de-
pending on the applicable constraints, one may be able to
improve the performance of search by enforcing higher con-
sistency levels during search.

4 Constraint Model Reformulation
In this section, we reformulate our constraint model for SET
by exploiting the multi-dimensionality of the domains. First,
we describe how we reformulate the CSP by partitioning the
domains of the variables based on the values of a given do-
main dimension. We show that this process yields, in the
case of the game of SET to a disjunctive decomposition of
the CSP producing a set of CSPs at each reformulation step,
which we illustrate with two examples.

4.1 Model Reformulation
Each reformulation in Figure 1 step consists in partitioning
the domains of the variables according to one of the four
domain dimensions and enforcing the constraint relative to
that dimension. We describe the process via an example.

Consider the example of six-card game of Figure 6. In
this example, all cards are red and have an empty filling. The
only constraints left enforce are thus N= ⊕ N 6=, S= ⊕ S 6=,

and id 6=. Considering first the dimension ‘number,’ we par-
tition the variables’ domains into equivalences classes based
on the values of the chosen dimension, number, as shown in
Figure 7. This operation corresponds to domain partition-

c1 c2 c3 

c4 c5 c6 

Figure 6: Simple example. Figure 7: CSP model.

ing by value meta-interchangeability (Freuder 1991). All
subproblems can be generated by a Cartesian product of the
domain partitions. However, enforcing the constraint N=

⊕ N 6= and ignoring symmetrical subproblems6 yield a de-
composition of the CSP into only four CSPs: one for each
domain partition enforcing N= (Figure 8) and one where
the domains have all-different partitions enforcing N 6= (Fig-
ure 9). The solutions of the CSP in Figure 7 are partitioned

c3,c4,c6 

c3,c4,c6 

c3,c4,c6 

V1 

V2 
V3 

S= ⊕ S≠ 

Id≠ 

c1,c2 

c1,c2 

c1,c2 

V1 

V2 
V3 

S= ⊕ S≠ 

Id≠ 
c5 

c5 

c5 

V1 

V2 
V3 

S= ⊕ S≠ 

Id≠ 

Figure 8: Domain dimension: number; values: 1, 2, and 3.

c3,c4,c6 

c1,c2 

c5 

V1 

V2 
V3 

S= ⊕ S≠ 

Id≠ 

Figure 9: Variables have all different numbers.

over the four problems generated in this manner. The above
process can be applied for each of the four domain dimen-
sions.

4.2 Reformulation strategy for SET

The strategy of Figure 1 exploits the one-dimensionality
of the constraints of the CSP model where each one-
dimensional constraint is applied to the CSP in sequence,
one at a time. For SET, we showed how exploiting value
meta-interchangeability for a given dimension and enforc-
ing the constraint relative to that dimension decomposes the
CSP into four subproblems whose solution sets do not over-
lap. Combining the reformulation strategy of Figure 1 and
the above domain partitioning by value interchangeability
yields the reformulation tree of Figure 10. In this figure, Ai

denotes a domain dimension, a, b, c domain partitions, and

6Subproblems that can be obtained by permutation of the do-
mains are ignored.
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Figure 10: One-dimensional constraints are considered in se-
quence; mutually exclusive constraints are considered in parallel.

P (Ai, a) the subproblem resulting from enforcing the con-
straint relative to Ai and a. Two important questions arise in
general:

1. Which dimension (i.e., attribute) to choose at each step?
Naturally, one should reduce the branching factor by
choosing, for example, the dimension that yields the
smallest problem, the most symmetries, the largest do-
main partitions, etc.

2. Which subproblems are generated at each branching
step? The decomposition of Section 4.1 depends on the
interchangeability and constraint types that hold for the
considered dimension. Generalizing this decomposition
for all types of symmetries and constraints requires fur-
ther investigation.

In Section 5.2, we answer the above two questions for the
game of SET. Our approach is based on the analysis of the
domain table shown in Figure 4. Below, we motivate that
approach with two examples, see Sections 4.3 and 4.4. All
generated subproblems have the same set of variables. They
differ in the constraints and the variables’ domains. To gen-
erate the children of a given problem in the tree of Figure 10,
we need to specify the set of constraints and the domain set
of each child. The constraints set of a child subproblem is
that of the parent minus the constraints of the attribute used
in the branching. The domains of a child is smaller than
those of its parent, which is the main incentive for the de-
composition. As for the set of domains of a child, we distin-
guish the case where the enforced constraint at the branch-
ing step is an equality or an inequality constraint. The for-
mer keeps all domains equal whereas the latter yields a new
problem where variables have different domains. Below, we
illustrate the above on two examples.

4.3 Branching on equality constraints
In Figure 11, we consider the example of Figure 4 but re-
port the domain table in a more compact form. Focusing
on the dimension filling, we notice that filling takes only
two values e and f . We conclude that we should form
only two CSPs: one for the cards with an empty filling
(i.e., {c2, c3, c8, c9}) and the other for the cards with a full
filling (i.e., {c1, c4, c5, c6, c7}). Because there is no card

D1 = D2 = D3 c1 c2 c3 c4 c5 c6 c7 c8 c9 

Number 3 1 1 2 3 3 3 3 1 
Color r r g p g r p r r 
Filling f e e f f f f e e 
Shape o d s d d s d o o 

c1 c2 c3 

c4 c5 c6 

c7 c8 c9 

Figure 11: The compacted domain table of the example of Fig. 4.

Filling ≡ e 

C ={F,S,C,N} 

Filling ≡ f 

D1 =D2=D3 c2 c3 c8 c9 c1 c4 c5 c6 c7 

Filling e e e e f f f f f 
F≠ 

✗ 
C ={S,C,N}, F ≡ e C ={S,C,N}, F ≡ f 

D1 = D2 = D3  c2 c3 c9 c8 

Number 1 1 1 3 
Filling e e e e 

D1 = D2 = D3  c4 c1 c5 c6 c8 

Number 2 3 3 3 3 
Filling f f f f f 

Figure 12: Branching on equality constraints F=.

with a striped filling, we should not generate (1) a sub-
problem for this third possible value or (2) a subproblem
where F 6= holds. The two generated subproblems have one
fewer constraint than their parent and the domains of the
variables in each subproblem are the same. The tree of Fig-
ure 12 illustrates the partitioning of the cards c1, . . . , c9 as
described above, then the partitioning of {c2, c3, c8, c9} and
{c1, c4, c5, c6, c7} given the domain dimension number. To
detect the above-described situation, our algorithm exam-
ines the (detailed) domain table shown in Table 1. Column l

Table 1: Cell 10l shows that no card with a striped filling exists.
a b c d e f g h i J k l 

1 Attribute/val c1 c2 c3 c4 c5 c6 c7 c8 c9 Σ 

2 

Number 

1 0 1 1 0 0 0 1 0 1 4 

3 2 0 0 0 1 0 0 0 0 0 1 

4 3 1 0 0 0 1 1 0 1 0 4 

5 

Color 

r 1 1 0 0 0 1 0 1 1 5 

6 g 0 0 1 0 1 0 0 0 0 2 

7 p 0 0 0 1 0 0 1 0 0 2 

8 

Filling 

f 1 0 0 1 1 1 1 0 0 5 

9 e 0 1 1 0 0 0 0 1 1 4 

10 s 0 0 0 0 0 0 0 0 0 0 

11 

Shape 

s 0 0 1 0 0 1 0 0 0 2 

12 o 1 0 0 0 0 0 1 1 1 4 

13 d 0 1 0 1 1 0 0 0 0 3 

sums up the number of cards in the domain for a given at-
tribute value (represented as a row in the table). The null
entry in Cell 10l indicates that there is no card with a striped
filling (Row 10) in the domain, and that selecting filling as a
dimension for reformulation would yield only two subprob-
lems and not four.



4.4 Branching on an inequality constraint
The example of Figure 13 shows the compacted domain ta-
ble of the six-cards example of Figure 6. The remaining one-

c1 c2 c3 

c4 c5 c6 

D1 = D2 = D3  c1 c2 c3 c4 c5 c6 

Number 2 2 1 1 3 1 
Color r r r r r r 
Filling e e e e e e 
Shape o d s d o o 

Figure 13: The compacted domain table of the example of Fig. 6.

dimensional constraints are over shape and number. Here,
we can choose either dimension shape or number for the re-
formulation step. Choosing the dimension number partitions
the variables’ domains into three sets of cards: {c3, c4, c6},
{c1, c2}, and {c5} with number values 1, 2, and 3, respec-
tively, see Figure 14. The subproblems with the domains

D1 = D2 = D3  c3 c4 c6 c1 c2 c5 

Number 1 1 1 2 2 3 N≠ 

C ={S,N} C≡r, F≡e 

✗ ✗ 

D1 = D2 = D3  c3 c4 c6 

Shape s d o 

C ={S} C≡r, F≡e,N≡1 C ={S}, F≡f, N≠,C≡r 

D1 c3 c4 c6 

Shape s d o 
D2  c1 c2 

Shape o d 
D3 c5 

Shape o 

Figure 14: D1 6= D2 6= D3 when branching on N 6=.

{c1, c2}, and {c5} do not have the three required cards for
a solution set, and are unsolvable. Our algorithm realizes
that fact by checking on the values in cells 3l and 4l of Ta-
ble 2.7 Now, in the subproblem where N 6= holds, the three
CSP variables have all-different domains, one for each value
of the attribute number (i.e., 1, 2, and 3). None of these do-
mains is empty in this subproblem. Importantly, note that
when the domains of a CSP in some node of the tree in Fig-
ure 10 are all different (i.e., D1 6= D2 6= D3), the same also
holds for all its children in the tree. In summary, because the
entries in 3l and 4l of Table 2 are in [1, 3) we do not gener-
ate subproblems with the domains {c1, c2} or {c5} but we
generate the subproblem for N 6=.

5 Reformulation Algorithm
Below we describe our reformulation algorithm for the game
of SET. It is motivated by the examples of Figures 12 and 13

7Only two domain dimensions are shown in Table 2, reflecting
the constraints applicable on the problem on top of Figure 13.

Table 2: Cells 3l and 4l indicate that the subproblems for values 2
and 3 need not be generated.

a b c d e f g h l 
1 Attribute/val c1 c2 c3 c4 c5 c6 Σ 

2 

Number 

1 0 0 1 1 0 1 3 

3 2 1 1 0 0 0 0 2 

4 3 0 0 0 0 1 0 1 

11 

Shape 

s 0 0 1 0 0 0 1 

12 o 1 0 0 0 1 1 3 

13 d 0 1 0 1 0 0 2 

and implementing the general strategy of Figure 1.

5.1 Decomposition Tree
The nodes of the tree Figure 10 maintain the following in-
formation about the subproblem at the node:

1. Set of variables: The set of variables and their domains.

2. Set of constraints C: The set of applicable constraints.
The one-dimensional constraints are reduced by one from
a parent to a child.

3. Domain table: The table describing the multi-
dimensional domain such as the one shown in Figure 4 to
which we add the column indexed l as shown in Tables 1,
2, and 3. The l column sums up the values of the ci’s in
each row in the corresponding table. It indicates the num-
ber of cards with the corresponding attribute value. This
domain table is useful for choosing the attribute to branch
on as illustrated in Sections 4.3 and 4.4. Note that only the

Table 3: Domain table.
a b c d e f g h i j k l 

1 Attribute/val c1 c2 c3 c4 c5 c6 c7 c8 c9 Σ 

2 

Number 

1 1 0 0 0 0 1 0 0 0 2 

3 2 0 1 0 0 1 0 1 0 1 4 

4 3 0 0 1 1 0 0 0 1 0 3 

5 

Color 

r 1 0 0 0 0 1 0 0 0 2 

6 g 0 1 0 1 1 0 0 0 1 4 

7 p 0 0 1 0 0 0 1 1 0 3 

8 

Filling 

f 1 0 0 0 0 0 0 1 1 3 

9 e 0 1 0 0 0 0 0 0 0 1 

10 s 0 0 1 1 1 1 1 0 0 5 

11 

Shape 

s 1 0 0 0 0 0 0 0 1 2 

12 o 0 1 0 1 1 1 0 0 0 4 

13 d 0 0 1 0 0 0 1 1 0 3 

Table 4: Summary of domain table.
a b c d e f g h 

1 Attribute/val ΣD1 ΣD2 ΣD3 ΠDi ΣDi ΠΣDi 

2 

Number 

1 1 1 0 0 2 

24 3 2 1 1 2 2 4 

4 3 1 1 1 1 3 

5 

Color 

r 1 0 0 0 1 

16 6 g 1 2 1 2 4 

7 p 1 1 2 2 4 

8 

Filling 

f 1 0 2 0 3 

12 e 1 0 0 0 1 9 

s 1 3 1 3 4 10 

11 

Shape 

s 1 0 1 0 2 

24 12 o 1 3 0 0 4 

13 d 1 0 2 0 3 

entries corresponding to the applicable constraints need
to be represented and updated. Entries corresponding to
constraints enforced in an ancestor node in the decompo-
sition tree are omitted as in Table 2.

4. Summary of domain table: When the variables’ domains
are all different (i.e., D1 6= D2 6= D3), we generate an
additional table that is the summary of the domain table
as shown in Table 4 Here again, we keep and maintain



only entries (i.e., rows) corresponding to applicable con-
straints. Columns c, d, and e sum up the number of cards
with a given attribute value in the corresponding domain.
Columns f and g are the product and sum, respectively,
of the entries in columns c, d, and e in the same row. Fi-
nally, column h is the product of the values in column g
for the same attribute. The heuristics introduced below
justify the use of this summary information.

5.2 Flow Chart
The flow chart of the algorithm is shown in Figure 15 and
operates under the following assumptions:
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Figure 15: Our reformulation algorithm.

• An agenda is used to keep track of all ‘open problems.’
At the start, the initial problem is placed on the agenda.
The agenda can be managed in according to any strategy.

• Solving with BT search indicates finding all the solutions
to a subproblem using the search procedure described in
Section 3.2. The solution sets found are stored in some
unspecified data structure.

• One may choose to enforce some level of consistency on
each generated subproblem before placing it the agenda.
Subproblems that are deemed unsolvable are not added to
the agenda.

The algorithm uses the following test conditions and heuris-
tics. Below, we distinguish problems with identical domains
(i.e., D1 = D2 = D3) and the others (i.e., D1 6= D2 6= D3).
When D1 = D2 = D3, we examine only the domain table:

• Test1: When the column l in the domain table of the sub-
problem has a null entry, the two implications are en-
forced:

1. No card has that dimension value, the correspond-
ing subproblem need not be generated. For example,
striped for dimension filling in Figure 12.

2. For the same reason, we cannot form a subproblem
where domains are all different. For example, F 6= in
Figure 12 and N 6= Figure 14.

• Heuristic1: We branch on the attribute with the largest
number of zeros in the column l because branching on this
attribute yields the smallest number of new subproblems,
and will not require creating an A 6= subproblem.

• Test2: When the value in column l for any value i for a
dimension A is in [1, 3), the Ai subproblem need not be
generated. For example, values 2 and 3 for the dimension
number in Figure 14.

• Heuristic2: We branch on the dimension that has the
largest number of entries in column l that are less than
three. When there are no null entries in column l for any
dimension, all four subproblems must be generated.

• Heuristic3: We randomly choose any of the ‘active’ di-
mensions. This step requires generating all four subprob-
lems.

When D1 6= D2 6= D3, we consider only the table called
‘summary of domain table’ (see example in Figure 4). The
columns c, d, and e indicate the size of domain D1, D2, and
D3. Their product is available in columnf of the table: it is
zero if some domain is empty. Column g computes the num-
ber of cards that have the same value for the same dimen-
sion, the product for all the products for the same dimension
is recorded in column h. A null value in column h indicates
that the dimension needs to be chosen in priority because it
would yield the generation of at most two subproblems.

• Test3: The entry in column h for a attribute A of the sum-
mary of domain table is equal to zero. In this situation,
there is at least one value i for A that does not appear in
any domain.

• Heuristic4: We branch on the attribute where column h is
null, breaking ties in favor of the attribute with the largest
number of null entries in column f . Note that when an
entry in column f is null (for an attribute value i), the
subproblem Ai and that where A 6= holds will have at least
one empty domain, and need not be generated (or will be
pruned).

• Heuristic5: We branch on the attribute where column f
has the largest number of null entries. We generate all
four subproblems, those for the attribute value i with a
null entry in column f will have an empty domain and
will be pruned.

The above three tests cover all cases, and yield a complete
and sound algorithm for selecting a dimension for reformu-
lation. Generating and storing the various tables is linear in
the number of attribute values. Also, once a problem is de-
composed, the corresponding tables can be discarded. The
number of generated subproblems is O(|A|i+1) where |A|
is the number of attributes and i is the maximum number of
attribute values.



Figure 17 shows the trace of a short execution of our algo-
rithm on the nine-cards problem of Figure 16. This problem

D1=D2=D3  c1 c2 c3 c4 c5 c6 c7 c8 c9 

Number 2 2 1 1 2 1 3 3 3 
Color r r r r p r r g g 
Filling f f e e s e e e s 
Shape o d s d d o o s o 

c1 c2 c3 

c4 c5 c6 

c7 c8 c9 

Figure 16: An example with nine cards and one solution set.

C = {S,C,N}, Filling≡e 

D1=D2=D3  c3 c4 c6 c7 c8 c1 c2 c5 c9 

Filling e e e e e f f s s 

Filling ≡ e 
✗ ✗ 

F≠ 

D1=D2=D3  c3 c4 c6 c7 c8 

Color r r r r g 

Color ≡ r C≠, Color≡g,p ✗ 

D1=D2=D3  c3 c4 c6 c7 

Number 1 1 1 3 

C ={S,N}, Filling≡e, Color≡r 

Number≡ 1 N≠, Number≡2,3 ✗ 
C ={S}, Filling≡e, Color≡r,  

Number≡1 

S= ✗ 

D1=D2=D3  c3 c4 c6 

Shape s d o S≠ 

C =∅, Filling≡e, Color≡r,  
Number≡1, S≠ 

D1 c3 

Shape s 

D2 c4 

Shape d 

D3 c6 

Shape o 

D1  c3 c4 c6 c7 c8 

Number 1 1 1 3 3 

D2  c5 c9 
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D2 c9 

Color g 

C = {S,C}, F≠, N≠ 

C=,C≠ ✗ 

C = {F,S,C,N} 

Figure 17: Illustrating the reformulation strategy.

instance has one solution. The algorithm proceeds by select-
ing sequentially the dimensions filling, number, and shape.

6 Results
To evaluate the effectiveness of our reformulation strategy,
we run the following three algorithms on a set of 1000 ran-
dom SET instances of domain size {3,4, . . . ,81}: Brute
force, search (Section 3.2), and reformulation followed by
search (Section 5). ‘Brute force’ is the algorithm with the
three nested for-loops that generates all combinations of
three cards then tests whether or not they satisfy the con-
straints. Figure 18 shows the number of constraint checks
for increasing domain size. Figure 18 shows the number
of constraint checks (#CC) for increasing domain size; Fig-
ure 19 shows the number of nodes visited (#NV) for increas-
ing domain size; and Table 5 compares the performance of
all three algorithms on two domain sizes (12 and 81 cards)
displaying the average number of solutions, #CC, #NV, and
CPU time.
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Figure 18: Comparing the numbers of constraint checks for in-
creasing problem size.
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Figure 19: Comparing the number of nodes visited for increasing
problem size. Brute force was not included as it overwhelmed the
others.

The goal is more to compare the trends than the raw
numbers. From those results, it is apparent that reformula-
tion dramatically reduces the rapid growth, with increasing
the domain size, of the number of constraint checks (Fig-
ure 18) and significantly that of nodes visited (Figure 19),
thus demonstrating the benefits of our reformulations. The
time measurements are not significant given the size of the



Table 5: Comparing the performance of three algorithms.

Algorithm #Cards #Sol #CC #NV Time
[msec]

Brute force
12 2.77

1956.80 220 0
Search 1726.653 80.77 62.46
Reformulation 85.08 12.65 5.85
Brute force

81 1080
758808 85320 0

Search 553365.00 4401.00 101.04
Reformulation 31158.00 2565.00 39.44

problem, the precision of the clock (i.e., 10 ms), and the time
necessary for setting up the data structures for search. While
it is true that the game of SET is a simple problem, we do
believe that our techniques are widely applicable and will
have significant impact on industrial size applications.

7 An Interactive Interface for SET
We have built a graphical user interface for SET (see Fig-
ure 20) that uses the two approaches for finding all solution
sets for a given set of cards on the board. The interface al-
lows us to compare our solvers performance in the context
of a real game of SET.

The game can be played in two modes: “Single Player”
and “Two Players.” The game also features two automated
solvers: by Backtrack Search (Section 3.2) and by Reformu-
lation (Section 5.2). The users can play the game in CSP
mode or non-CSP mode. If they are in CSP mode, they
can see statistics about the current board (number of con-
straint check, CPU time, etc.) as well as switch between
the two solvers. We have also provided a “2 Card Hint”
button, which highlights two cards appearing in the same
solution set, letting the user find the third. We also have
a “1 Card Hint” button, which highlights one card that ap-
pears in a solution set, letting the user find the remaining
two cards. If at any time there is no solution found for the
twelve cards on the board, three more cards will flip open
creating a board of up to 21 cards. If there are no solu-
tions found in the cards displayed, the game is over, and
the user can start again. Our applet is available online on
http://gameofset.unl.edu.

8 Discussion & Related Work
Like most popular puzzles, the rules of SET are rather simple
yet the game is quite addictive. We have found combinato-
rial puzzles to be effective vehicles to introduce the general
public to the area of Constraint Processing (CP). They are
also amazingly suitable tools to attract Computer Science
students to study CP and train them in modeling, search, and
constraint propagation techniques. For example, past stu-
dents have developed constraint models and various prop-
agation algorithms for Minesweeper8 (Bayer, Snyder, and
Choueiry 2006) and Sudoku9 (Reeson et al. 2007). In addi-
tion to the educational benefits, our initiatives have inspired

8http://minesweeper.unl.edu
9http://sudoku.unl.edu

new research directions as documented in (Karakashian et
al. 2010b; Woodward et al. 2011). Combinatorial puzzles
have thus allowed us to serve all three tenants of the aca-
demic mission, namely, research, education, and outreach.

In (1995; 1997), Freuder and Sabin described abstraction
and reformulation procedures for solving multi-dimensional
CSPs, considering both multi-dimensional constraints and
multi-dimensional domains. They evaluated them on n-
queens problems in (1995; 1997), and on randomly gener-
ated problems with a controlled level of interchangeability
in (1997). Our motivation and procedures significantly over-
laps with theirs:

1. Their reformulation considers a single reformulation step,
while ours is designed to accommodate any number of
one-dimensional constraints for reformulation.

2. After reformulation and search, their technique includes a
refinement step, which is not needed in our approach.

3. Finally, their experiments, conducted on random prob-
lems, do not provide the strikingly convincing results that
our approach does.

As future work, we propose to investigate how to automate
the selection of types of interchangeability exploited.

9 Conclusions & Future Work
In conclusion, we have created a reformulation strategy for
multi-dimensional CSPs that shows a significant reduction
in the search effort. We believe that the techniques we have
proposed here can be applied to problems with more com-
plex domains and with more of a real-world significance.
In addition to building a graphical tool to explain prob-
lem solving by reformulation to students and the general
public, there are several directions for future work that we
would like to explore. The first is to build a general the-
ory of reformulation for multi-dimensional CSPs that uni-
fies the one proposed in (Freuder and Sabin 1997) and the
one we have proposed above. The second is to investigate
the applicability and usefulness of such a theory for gen-
eral CSPs especially in light of the advances in the study
of interchangeability and symmetry in CSPs (Freuder 1991;
Gent, Petrie, and Puget 2006; Karakashian et al. 2010a). Fi-
nally, we would like to investigate whether the definition of
a multi-dimensional CSP provided in (Yoshikawa and Wada
1992) needs to be revised to allow variable domains to be
different.
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